TY - JOUR
T1 - Thin-foil expansion into a vacuum with a two-temperature electron distribution function
AU - Diaw, A.
AU - Mora, P.
PY - 2012/8/7
Y1 - 2012/8/7
N2 - A kinetic theory of the expansion into a vacuum of a plasma thin foil with initially a hot and a cold Maxwellian electron population is examined with a one-dimensional kinetic code. Whereas hot electrons always lose energy to expanding ions, cold electrons can either gain or lose energy depending on the initial temperature and density ratios and on time. When the cold electrons' density is not too large, they experience initially an adiabatic compression by the electric field associated with the rarefaction wave. The corresponding temperature increase can be as large as a factor of a few tens. Later on, as expected, the cold electrons eventually lose energy to the expansion. When cold electrons are numerically dominant, a rarefaction shock appears during the first phase of the expansion. Hot electrons cool down faster than cold electrons, thus reducing the effective temperature ratio. Furthermore, the amplitude of the rarefaction shock and the dip that it causes on the ion velocity spectrum tend to be smoothed out by the expansion.
AB - A kinetic theory of the expansion into a vacuum of a plasma thin foil with initially a hot and a cold Maxwellian electron population is examined with a one-dimensional kinetic code. Whereas hot electrons always lose energy to expanding ions, cold electrons can either gain or lose energy depending on the initial temperature and density ratios and on time. When the cold electrons' density is not too large, they experience initially an adiabatic compression by the electric field associated with the rarefaction wave. The corresponding temperature increase can be as large as a factor of a few tens. Later on, as expected, the cold electrons eventually lose energy to the expansion. When cold electrons are numerically dominant, a rarefaction shock appears during the first phase of the expansion. Hot electrons cool down faster than cold electrons, thus reducing the effective temperature ratio. Furthermore, the amplitude of the rarefaction shock and the dip that it causes on the ion velocity spectrum tend to be smoothed out by the expansion.
UR - http://www.scopus.com/inward/record.url?scp=84864982847&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.86.026403
DO - 10.1103/PhysRevE.86.026403
M3 - Article
AN - SCOPUS:84864982847
SN - 1539-3755
VL - 86
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 2
M1 - 026403
ER -