Thermohydraulic Design Analysis of the Target Assembly in the Material Plasma Exposure eXperiment Facility

Research output: Contribution to journalArticlepeer-review

Abstract

The Material Plasma Exposure eXperiment (MPEX) project seeks to design a steady-state linear plasma facility at Oak Ridge National Laboratory that will be used to study plasma-material interactions (PMIs) at fusion prototypic levels, supporting the evaluation and development of materials for the next generation of fusion devices. This study is focused on PMI exposure of small-size neutron-irradiated specimens, which are clamped onto an actively cooled component. A thermohydraulic evaluation of a new MPEX target assembly design to assess the appropriate operation during MPEX operation is presented. To further guide the design and assess the structural integrity of the components under expected loads, preliminary thermomechanical stress analyses were also conducted. To ensure good thermal contact between the components, thermal interface materials, such as silver flexible graphite, were used in the assembly. It was found that the maximum target temperatures of 1572, 1463, and 1315 K were obtained for Grafoil thicknesses of 0.61, 0.38, and 0.25 mm, respectively. The distribution of the axial deformation at high heat fluxes showed that there are no gaps between components, indicating good contact at material interfaces. Moreover, the contact pressure between the target and other components indicated that very good contact was established at these interfaces. The stress-strain conditions for the target will be further used to assess the appropriate operation during MPEX experiments and gain insight into materials science phenomena during PMI experiments.

Original languageEnglish
Pages (from-to)1149-1177
Number of pages29
JournalFusion Science and Technology
Volume79
Issue number8
DOIs
StatePublished - 2023

Funding

This work was sponsored by the Office of Fusion Energy Sciences under contract DE-AC05-00OR22725 with UT-Battelle, LLC. This work was sponsored by the Office of Fusion Energy Sciences under contract DE-AC05-00OR22725 with UT-Battelle, LLC. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://energy.gov/downloads/doe-public-access-plan). This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( https://energy.gov/downloads/doe-public-access-plan ).

FundersFunder number
DOE Public Access Plan
United States Government
U.S. Department of Energy
Fusion Energy SciencesDE-AC05-00OR22725

    Keywords

    • Plasma-facing components
    • heat flux
    • steady state
    • stress analysis

    Fingerprint

    Dive into the research topics of 'Thermohydraulic Design Analysis of the Target Assembly in the Material Plasma Exposure eXperiment Facility'. Together they form a unique fingerprint.

    Cite this