TY - GEN
T1 - Thermodynamic modeling and solidification simulation of Ti-Al-Cr alloys
AU - Yang, Y.
AU - Bewlay, B. P.
AU - Chang, Y. A.
PY - 2011
Y1 - 2011
N2 - Titanium aluminide based alloys are candidate materials for high temperature structural applications. They are typically alloyed with elements such as Nb, Ta, Mo, Cr and B for property enhancement. To understand the relationship between microstructure and alloy composition/processing condition, detailed models of phase equilibria in multicomponent Ti-Al based alloys are needed. In this work, we developed thermodynamic models for the phases in the Ti-Al-Cr system based on critically assessed binary models and ternary experimental data in literature, using the CALPHAD approach. Isothermal sections at 1200, 1150, 1000 and 800°C, and the liquidus projection, were calculated from the currently developed thermodynamic models; these are in satisfactory agreement with experimental data. Isopleths were calculated at specified Cr concentrations, and solidification paths were simulated under the Scheil conditions for a range of Ti-Al-Cr alloys. From the calculated phase diagrams and solidification paths, the effect of Cr on the microstructure of Ti-Al alloys can be understood.
AB - Titanium aluminide based alloys are candidate materials for high temperature structural applications. They are typically alloyed with elements such as Nb, Ta, Mo, Cr and B for property enhancement. To understand the relationship between microstructure and alloy composition/processing condition, detailed models of phase equilibria in multicomponent Ti-Al based alloys are needed. In this work, we developed thermodynamic models for the phases in the Ti-Al-Cr system based on critically assessed binary models and ternary experimental data in literature, using the CALPHAD approach. Isothermal sections at 1200, 1150, 1000 and 800°C, and the liquidus projection, were calculated from the currently developed thermodynamic models; these are in satisfactory agreement with experimental data. Isopleths were calculated at specified Cr concentrations, and solidification paths were simulated under the Scheil conditions for a range of Ti-Al-Cr alloys. From the calculated phase diagrams and solidification paths, the effect of Cr on the microstructure of Ti-Al alloys can be understood.
UR - http://www.scopus.com/inward/record.url?scp=80053179158&partnerID=8YFLogxK
U2 - 10.1557/opl.2011.246
DO - 10.1557/opl.2011.246
M3 - Conference contribution
AN - SCOPUS:80053179158
SN - 9781605112725
T3 - Materials Research Society Symposium Proceedings
SP - 101
EP - 106
BT - Intermetallic-Based Alloys for Structural and Functional Applications
T2 - 2010 MRS Fall Meeting
Y2 - 29 November 2010 through 3 December 2010
ER -