Abstract
A finite element model has been developed to quantitatively evaluate the local thermomechanical conditions for weld metal solidification cracking in a laboratory weldability test (the Sigmajig test). The loading mechanism in the Sigmajig test was simulated by means of nonlinear spring elements. The effects of weld pool solidification on the thermal and mechanical behaviors of the specimen were considered. An efficient algorithm was developed to include the solidification effects in the material constitutive relations. Stress/temperature/location diagrams were constructed to reveal the local stress development behind the traveling weld pool where solidification cracking occurs. Based on the concept of the material resistance to cracking and the mechanical driving force for cracking, the calculated local stress in the solidification temperature range was used to explain the experimentally observed cracking initiation behaviors of a nickel-based superalloy single crystal under different welding and loading conditions.
Original language | English |
---|---|
Pages (from-to) | 470-s |
Journal | Welding Journal |
Volume | 76 |
Issue number | 11 |
State | Published - Nov 1997 |
Externally published | Yes |