Thermal neutron scattering evaluation framework

Chris Chapman, Luiz Leal, Farzad Rahnema, Yaron Danon, Goran Arbanas

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A neutron scattering kernel data evaluation framework for computation of model-dependent predictions and their uncertainties is outlined. In this framework, model parameters are fitted to double-differential cross section measurements and their uncertainties. For convenience, the initial implementation of this framework uses the molecular dynamics model implemented in the GROMACS code. It is applied to light water using the TIP4P/2005f interaction model. These trajectories computed by GROMACS are then processed using nMOLDYN to compute the density of states, which is then used to calculate the scattering kernel using the Gaussian approximation. Double differential cross sections computed from the scattering kernel are then fitted to double-differential scattering data measured at the Spallation Neutron Source detector at Oak Ridge National Laboratory. The fitting procedure is designed to yield optimized model-parameters and their uncertainties in the form of a covariance matrix, from which new evaluations of thermal neutron scattering kernel will be generated. The Unified Monte Carlo method will be used to fit the simulation data to the experimental data.

Original languageEnglish
Title of host publicationND 2016
Subtitle of host publicationInternational Conference on Nuclear Data for Science and Technology
EditorsPeter Siegler, Wim Mondelaers, Arjan Plompen, Franz-Josef Hambsch, Peter Schillebeeckx, Stefan Kopecky, Jan Heyse, Stephan Oberstedt
PublisherEDP Sciences
ISBN (Electronic)9782759890200
DOIs
StatePublished - Sep 13 2017
Event2016 International Conference on Nuclear Data for Science and Technology, ND 2016 - Bruges, Belgium
Duration: Sep 11 2016Sep 16 2016

Publication series

NameEPJ Web of Conferences
Volume146
ISSN (Print)2101-6275
ISSN (Electronic)2100-014X

Conference

Conference2016 International Conference on Nuclear Data for Science and Technology, ND 2016
Country/TerritoryBelgium
CityBruges
Period09/11/1609/16/16

Funding

a e-mail: [email protected] This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
DOE Office of Science
DOE Office of Nuclear Energy
U.S. Department of Energy
Office of Science
National Nuclear Security Administration

    Fingerprint

    Dive into the research topics of 'Thermal neutron scattering evaluation framework'. Together they form a unique fingerprint.

    Cite this