@inproceedings{b8edf941db7a4d1cb8aa2040b6a3db04,
title = "Thermal hydraulic method for whole core design analysis of an HTGR",
abstract = "A new thermal hydraulic method and initial results are presented for core-wide steady state analysis of prismatic High Temperature Gas-Cooled Reactors (HTGR). The method allows for the complete solution of temperature and coolant mass flow distribution by solving quasi-steady energy balances for the discretized core. Assembly blocks are discretized into unit cells for which the average temperature of each unit cell is determined. Convective heat removal is coupled to the unit cell energy balances by a 1-D axial flow model. The flow model uses established correlations for friction factor and Nusselt number. Bypass flow is explicitly calculated by using an initial guess for mass flow distribution and determining the exit pressure of each flow channel. The mass flow distribution is updated until a uniform core exit pressure condition is reached. Results are obtained for the MHTGR-350 with emphasis on the change in thermal hydraulic parameters due to various steady state power profiles and bypass gap widths. Steady state temperature distribution and its variations are discussed.",
keywords = "Core design, HTGR, Thermal hydraulics",
author = "Huning, {Alexander J.} and Srinivas Garimella",
year = "2013",
language = "English",
isbn = "9781627486439",
series = "International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2013",
pages = "2182--2193",
booktitle = "International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2013",
note = "International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2013 ; Conference date: 05-05-2013 Through 09-05-2013",
}