Theory of the Little-Parks effect in spin-triplet superconductors

Chengyun Hua, Eugene Dumitrescu, Gábor B. Halász

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The celebrated Little-Parks effect in mesoscopic superconducting rings has recently gained great attention due to its potential to probe half-quantum vortices in spin-triplet superconductors. However, despite the large number of works reporting anomalous Little-Parks measurements attributed to unconventional superconductivity, the general signatures of spin-triplet pairing in the Little-Parks effect have been less systematically investigated. Here we use Ginzburg-Landau theory to study the Little-Parks effect in a spin-triplet superconducting ring that supports half-quantum vortices; we calculate the field-induced Little-Parks oscillations of both the critical temperature itself and the residual resistance resulting from thermal vortex tunneling below the critical temperature. We observe two separate critical temperatures with a single-spin superconducting state in between and find that due to the existence of half-quantum vortices, each minimum in the upper critical temperature splits into two minima for the lower critical temperature. From a rigorous calculation of the residual resistance, we confirm that these two minima in the lower critical temperature translate into two maxima in the residual resistance below and establish the general conditions under which the two maxima can be practically resolved. In particular, we identify a fundamental trade-off between sharpening each maximum and keeping the overall magnitude of the resistance large. Our results will guide experimental efforts in designing mesoscopic ring geometries for probing half-quantum vortices in spin-triplet candidate materials on the device scale.

Original languageEnglish
Article number214503
JournalPhysical Review B
Volume107
Issue number21
DOIs
StatePublished - Jun 1 2023

Funding

This manuscript has been authored by employees of UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. This work was supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

FundersFunder number
U.S. Department of Energy
Office of Science
Basic Energy Sciences
Division of Materials Sciences and Engineering

    Fingerprint

    Dive into the research topics of 'Theory of the Little-Parks effect in spin-triplet superconductors'. Together they form a unique fingerprint.

    Cite this