Abstract
The radial extent and spatial structure of type-I edge localized modes (ELMs) in ASDEX Upgrade are investigated using data from a mid-plane manipulator equipped with Langmuir probes and a fast visible imaging camera and are compared to data from MAST. Plasmas with a range of toroidal magnetic fields have been studied. The radial extent of the ELM efflux is found to be largest at the smaller toroidal magnetic field. A study of a series of shots on ASDEX Upgrade with different plasma edge to wall separation suggests that the closeness of the wall does not have a stabilizing effect on the radial extent of the ELM. The data from the mid-plane manipulator and from visible imaging are consistent with non-linear ballooning mode theory, which predicts that the ELM has a filament like structure. On both devices these structures have a poloidal extent of 5-10 cm and a typical toroidal mode number of ∼15 and are found to accelerate away from the plasma edge. The acceleration is ∼3 times larger on MAST than on ASDEX Upgrade.
Original language | English |
---|---|
Pages (from-to) | 995-1013 |
Number of pages | 19 |
Journal | Plasma Physics and Controlled Fusion |
Volume | 47 |
Issue number | 7 |
DOIs | |
State | Published - Jul 1 2005 |
Externally published | Yes |