Abstract
Simulations of massive gas injection for disruption mitigation in DIII-D are carried out to compare the toroidal peaking of radiated power for the cases of one and two gas jets. The radiation toroidal peaking factor (TPF) results from a combination of the distribution of impurities and the distribution of heat flux associated with the n = 1 mode. When ignoring the effects of strong uni-directional neutral beam injection and rotation present in the experiment, the injected impurities are found to spread helically along field lines preferentially toward the high-field-side, which is explained in terms of a nozzle equation. Therefore when considering the plasma rest frame, reversing the current direction also reverses the toroidal direction of impurity spreading. During the pre-thermal quench phase of the disruption, the toroidal peaking of radiated power is reduced in a straightforward manner by increasing from one to two gas jets. However, during the thermal quench phase, reduction in the TPF is achieved only for a particular arrangement of the two gas valves with respect to the field line pitch. In particular, the relationship between the two valve locations and the 1/1 mode phase is critical, where gas valve spacing that is coherent with 1/1 symmetry effectively reduces TPF.
Original language | English |
---|---|
Article number | 073032 |
Journal | Nuclear Fusion |
Volume | 55 |
Issue number | 7 |
DOIs | |
State | Published - Jul 1 2015 |
Keywords
- magnetohydrodynamic
- resistive MHD modes
- tokamaks