Abstract
Background: Japanese encephalitis virus (JEV), the causative agent of Japanese encephalitis (JE), is endemic to the Republic of Korea (ROK) where unvaccinated United States (U.S.) military Service members, civilians and family members are stationed. The primary vector of the JEV in the ROK is Culex tritaeniorhynchus. The ecological relationship between Culex spp. and rice fields has been studied extensively; rice fields have been shown to increase the prevalence of Cx. tritaeniorhynchus. This research was conducted to determine if the quantification of rice field land cover surrounding U.S. military installations in the ROK should be used as a parameter in a larger risk model that predicts the abundance of Cx. tritaeniorhynchus populations.Mosquito data from the U.S. Forces Korea (USFK) mosquito surveillance program were used in this project. The average number of female Cx. tritaeniorhynchus collected per trap night for the months of August and September, 2002-2008, was calculated. Rice fields were manually digitized inside 1.5 km buffer zones surrounding U.S. military installations on high-resolution satellite images, and the proportion of rice fields was calculated for each buffer zone.Results: Mosquito data collected from seventeen sample sites were analyzed for an association with the proportion of rice field land cover. Results demonstrated that the linear relationship between the proportion of rice fields and mosquito abundance was statistically significant (R2 = 0.62, r = .79, F = 22.72, p < 0.001).Conclusions: The analysis presented shows a statistically significant linear relationship between the two parameters, proportion of rice field land cover and log10 of the average number of Cx. tritaeniorhynchus collected per trap night. The findings confirm that agricultural land cover should be included in future studies to develop JE risk prediction models for non-indigenous personnel living at military installations in the ROK.
Original language | English |
---|---|
Article number | 23 |
Journal | International Journal of Health Geographics |
Volume | 9 |
DOIs | |
State | Published - Jun 23 2010 |
Externally published | Yes |
Funding
The approach to document filtering and exploration presented, is also not limited to health documents. The current implementation is tuned to work with PubMed abstracts and to take advantage of information contained in MeSH headings. But, the overall facet-based, time-place-concept document filtering approach is a generic one that is potentially applicable to any documents. Of course, for documents that do not contain an explicit distinction between the location a document is from or about, there is an added challenge to distinguish among those two kinds of place. Our current implementation does not include capabilities to do that, but we believe the current implementation is easily generalizable to any formal publications that cite the affiliation of authors and mention places in the content. We are currently assessing this contention with an extension of the system to support filtering and exploration of grant abstracts from the U.S. National Science Foundation. This material is based upon work supported by the U.S. National Science Foundation (grant # EIA-0306845) and by the U.S. Department of Homeland Security under Award Number: 2009-ST-061-CI0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. All decisions about the research (study design, software implementation) and about this publication were the responsibility of the authors and are not intended to reflect views of the research sponsors.
Funders | Funder number |
---|---|
National Science Foundation | 0306845, EIA-0306845 |
U.S. Department of Homeland Security | 2009-ST-061-CI0001 |