Abstract
We present the first systematic follow-up of Planck Sunyaev-Zeldovich effect (SZE) selected candidates down to signal-to-noise (S/N) of 3 over the 5000 deg2 covered by the Dark Energy Survey. Using the MCMF cluster confirmation algorithm, we identify optical counterparts, determine photometric redshifts, and richnesses and assign a parameter, fcont, that reflects the probability that each SZE-optical pairing represents a random superposition of physically unassociated systems rather than a real cluster. The new PSZ-MCMF cluster catalogue consists of 853 MCMF confirmed clusters and has a purity of 90 per cent. We present the properties of subsamples of the PSZ-MCMF catalogue that have purities ranging from 90 per cent to 97.5 per cent, depending on the adopted fcont threshold. Halo mass estimates M500, redshifts, richnesses, and optical centres are presented for all PSZ-MCMF clusters. The PSZ-MCMF catalogue adds 589 previously unknown Planck identified clusters over the DES footprint and provides redshifts for an additional 50 previously published Planck-selected clusters with S/N>4.5. Using the subsample with spectroscopic redshifts, we demonstrate excellent cluster photo-z performance with an RMS scatter in Δz/(1 + z) of 0.47 per cent. Our MCMF based analysis allows us to infer the contamination fraction of the initial S/N>3 Planck-selected candidate list, which is ∼50 per cent. We present a method of estimating the completeness of the PSZ-MCMF cluster sample. In comparison to the previously published Planck cluster catalogues, this new S/N>3 MCMF confirmed cluster catalogue populates the lower mass regime at all redshifts and includes clusters up to z∼1.3.
| Original language | English |
|---|---|
| Pages (from-to) | 24-43 |
| Number of pages | 20 |
| Journal | Monthly Notices of the Royal Astronomical Society |
| Volume | 525 |
| Issue number | 1 |
| DOIs | |
| State | Published - Oct 1 2023 |
Funding
Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Funda\u00E7\u00E3o Carlos Chagas Filho de Amparo \u00E0 Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cient\u00EDfico e Tecnol\u00F3gico and the Minist\u00E9rio da Ci\u00EAncia, Tecnologia e Inova\u00E7\u00E3o, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union\u2019s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ci\u00EAncia e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. We would like to thank Guillaume Hurier for providing a quality assessment (Aghanim et al. ) for the Planck candidates in a first version of this work. We acknowledge financial support from the MPG Faculty Fellowship program, the ORIGINS cluster funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany\u2019s Excellence Strategy - EXC-2094 - 390783311, and the Ludwig-Maximilians-Universit\u00E4t Munich. Part of the research leading to these results has received funding from the European Research Council under the European Union\u2019s Seventh Framework Programme (FP7/2007\u20132013)/ERC grant agreement n\u00B0 340519.
Keywords
- galaxies: clusters: general
- galaxies: clusters: intracluster medium
- galaxies: distances and redshifts