Abstract
The purpose of this paper is to present an overview of ongoing work on the Million Worker Study (MWS), highlighting some of the key methods and progress so far as exemplified by the study of workers at the Mallinckrodt Chemical Works (MCW). The MWS began nearly 25 y ago and continues in a stepwise fashion, evaluating one study cohort at a time. It includes workers from U.S. Department of Energy (DOE) Manhattan Project facilities, U.S. Nuclear Regulatory Commission (NRC) regulated nuclear power plants, industrial radiographers, U.S. Department of Defense (DoD) nuclear weapons test participants, and physicians and technologists working with medical radiation. The purpose is to fill the major gap in radiation protection and science: What is the risk when exposure is received gradually over time rather than briefly as for the atomic bomb survivors? Studies published or planned in 2018 include leukemia (and dosimetry) among atomic veterans, leukemia among nuclear power plant workers, mortality among workers at the MCW, and a comprehensive National Council on Radiation Protection and Measurements (NCRP) Report on dosimetry for the MWS. MCW has a singular place in history: the 40 tons (T) of uranium oxide produced at MCW were used by Enrico Fermi on 2 December 1942 to produce the first manmade sustained and controlled nuclear reaction, and the atomic age was born. Seventy-six years later, the authors followed the over 2,500 MCW workers for mortality and reconstructed dose from six sources of exposure: external gamma rays from the radioactive elements in pitchblende; medical x rays from occupationally required chest examinations; intakes of pitchblende (uranium, radium, and silica) measured by urine samples; radon breath analyses and dust surveys overseen by Robley Evans and Merril Eisenbud; occupational exposures received before and after employment at MCW; and cumulative radon concentrations and lung dose from the decay of radium in the work environment. The unique exposure reconstructions allow for multiple evaluations, including estimates of silica dust. The study results are relevant today. For example, NASA is interested that radium, deposited in the brain, releases high-LET alpha particles - the only human analogue, though limited, for high energy, high-Z particles (galactic cosmic rays) traveling through space that might affect astronauts on Mars missions.
Original language | English |
---|---|
Pages (from-to) | 381-385 |
Number of pages | 5 |
Journal | Health Physics |
Volume | 114 |
Issue number | 4 |
DOIs | |
State | Published - Apr 1 2018 |
Funding
Acknowledgment—This work was supported in part by a grant from the U.S. Nuclear Regulatory Commission (NRC-HQ‐60‐14‐G‐0011), a grant from the Centers for Disease Control and Prevention (5UE1EH000989), a grant from the National Aeronautics and Space Administration (Grant No. NNX15AU88G), and a grant from the U.S. Department of Energy (Grant No. DE-SC0008944 awarded to the National Council on Radiation Protection and Measurements, which included interagency support from the U.S. Nuclear Regulatory Commission, the U.S. Environmental Protection Agency, and the National Aeronautics and Space Administration). Further, contract support was received by Oak Ridge National Laboratory from the Office of Radiation and Indoor Air, U.S. Environmental Protection Agency, under Interagency Agreement DOE No. 1824 S581‐A1, under contract No. DE-AC05‐00OR22725 with UT-Battelle; and contract support was received by Oak Ridge Associated Universities from the U.S. Department of Energy under contract number DE-SC0014664.
Funders | Funder number |
---|---|
U.S. Department of Energy | DE-AC05‐00OR22725, 1824 S581‐A1, DE-SC0008944, DE-SC0014664 |
Centers for Disease Control and Prevention | 5UE1EH000989 |
National Aeronautics and Space Administration | NNX15AU88G |
U.S. Environmental Protection Agency | |
U.S. Nuclear Regulatory Commission | NRC-HQ‐60‐14‐G‐0011 |
Oak Ridge National Laboratory |
Keywords
- National Council on Radiation Protection and Measurements
- intake, radionuclide
- radiation dose
- radiation effects