Abstract
A reactivity-initiated accident (RIA) occurs when a control rod ejection or control blade drop causes an increase in the fission rate. The injection of energy results in an increase in fuel temperature which in turn causes rapid thermal expansion of the fuel pellet. This thermal expansion may result in pellet-cladding mechanical interaction (PCMI) in which the fuel imparts a mechanical strain to the cladding. PCMI may cause the cladding to fail, and thus, the mechanical response of cladding due to PCMI must be investigated when characterizing new cladding materials. Chromium-coated Zircaloy-4 is a near-term accident-tolerant fuel cladding that exhibits improved high-temperature oxidation resistance. Modified burst testing was utilized to experimentally simulate the effects of PCMI on both uncoated and chromium-coated Zircaloy cladding samples at hot zero power conditions. Samples were coated using either cold spraying or physical vapor deposition to understand the differences in behavior that the coating application method may cause. Digital image correlation was used to analyze images of the deforming specimens to extract the in-situ strain behavior of the cladding. The uncoated specimens burst at hoop strains ranging from 8.8 % to 17.2 %. The cold-spray chromium-coated Zircaloy specimens burst at hoop strains of 7.0 % to 11.0 %. The physical vapor deposition coated tubes burst at hoop strains of 9.1 % to 11.5 %. These results indicate that the chromium coating causes a loss in the ductility of the cladding. The higher burst hoop strains of the physical vapor deposition-coated samples relative to the cold-spray samples indicate that the cold-spraying technique causes more of a loss in ductility than physical vapor deposition. All samples burst at higher hoop strains than those expected to occur in an RIA for fresh cladding.
Original language | English |
---|---|
Article number | 155910 |
Journal | Journal of Nuclear Materials |
Volume | 614 |
DOIs | |
State | Published - Aug 2025 |
Funding
This work was funded by a U.S. Department of Energy Nuclear Energy grants DE-NE0009212 and DE-NE0009324 . This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Keywords
- Accident-tolerant fuel
- Cladding
- Coated zircaloy
- Modified burst test
- Reactivity-initiated accident