The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.

Philip R. Young, Justin G. Lashbrooke, Erik Alexandersson, Dan Jacobson, Claudio Moser, Riccardo Velasco, Melané A. Vivier

Research output: Contribution to journalArticlepeer-review

116 Scopus citations

Abstract

Background: Carotenoids are a heterogeneous group of plant isoprenoids primarily involved in photosynthesis. In plants the cleavage of carotenoids leads to the formation of the phytohormones abscisic acid and strigolactone, and C13-norisoprenoids involved in the characteristic flavour and aroma compounds in flowers and fruits and are of specific importance in the varietal character of grapes and wine. This work extends the previous reports of carotenoid gene expression and photosynthetic pigment analysis by providing an up-to-date pathway analysis and an important framework for the analysis of carotenoid metabolic pathways in grapevine.Results: Comparative genomics was used to identify 42 genes putatively involved in carotenoid biosynthesis/catabolism in grapevine. The genes are distributed on 16 of the 19 chromosomes and have been localised to the physical map of the heterozygous ENTAV115 grapevine sequence. Nine of the genes occur as single copies whereas the rest of the carotenoid metabolic genes have more than one paralogue. The cDNA copies of eleven corresponding genes from Vitis vinifera L. cv. Pinotage were characterised, and four where shown to be functional. Microarrays provided expression profiles of 39 accessions in the metabolic pathway during three berry developmental stages in Sauvignon blanc, whereas an optimised HPLC analysis provided the concentrations of individual carotenoids. This provides evidence of the functioning of the lutein epoxide cycle and the respective genes in grapevine. Similarly, orthologues of genes leading to the formation of strigolactone involved in shoot branching inhibition were identified: CCD7, CCD8 and MAX1. Moreover, the isoforms typically have different expression patterns, confirming the complex regulation of the pathway. Of particular interest is the expression pattern of the three VvNCEDs: Our results support previous findings that VvNCED3 is likely the isoform linked to ABA content in berries.Conclusions: The carotenoid metabolic pathway is well characterised, and the genes and enzymes have been studied in a number of plants. The study of the 42 carotenoid pathway genes of grapevine showed that they share a high degree of similarity with other eudicots. Expression and pigment profiling of developing berries provided insights into the most complete grapevine carotenoid pathway representation. This study represents an important reference study for further characterisation of carotenoid biosynthesis and catabolism in grapevine.

Original languageEnglish
Article number243
JournalBMC Genomics
Volume13
Issue number1
DOIs
StatePublished - Jun 15 2012
Externally publishedYes

Funding

The authors wish to thank Susanna Dalsant for technical assistance during gene isolation of VvPDS1; Dr Alessandro Cestaro for bioinformatic assistance; Dr Francis Cunningham for providing the carotenoid producing strains for the functional complementation assay; Dr Massimo Delladonna for the MTA for the Roche NimbleGen Grape Whole-Genome; Dr Alain Deloire and Zelmari Coetzee for viticultural assistance and berry physiological data; Carin Basson, Mukani Moyo and Dr Marietjie Stander for the ABA analysis in grapevine berries. This work was supported by grants from the Wine Industry Network for Expertise and Technology (Winetech), South African Table Grape Industry (SATI), Technology and Human Resources for Industry Programme (THRIP), National Research Foundation (NRF), Grape Research Coordination Network (GRCN) National Science Foundation (NSF, grant no. DBI 0741876); Carl Tryggers Stiftelse för Vetenskaplig Forskning; South Africa–Italy Programme on Research Co-operation (Project no. AEB#4).

FundersFunder number
Technology and Human Resources for Industry Programme
Wine Industry Network for Expertise and Technology
National Science FoundationDBI 0741876
Directorate for Biological Sciences0741876
Carl Tryggers Stiftelse för Vetenskaplig Forskning
National Research Foundation of Korea

    Fingerprint

    Dive into the research topics of 'The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.'. Together they form a unique fingerprint.

    Cite this