TY - JOUR
T1 - The general form of Hamilton's rule makes no predictions and cannot be tested empirically
AU - Nowak, Martin A.
AU - McAvoy, Alex
AU - Allen, Benjamin
AU - Wilson, Edward O.
PY - 2017/5/30
Y1 - 2017/5/30
N2 - Hamilton's rule asserts that a trait is favored by natural selection if the benefit to others, B, multiplied by relatedness, R, exceeds the cost to self, C. Specifically, Hamilton's rule states that the change in average trait value in a population is proportional to BR-C. This rule is commonly believed to be a natural law making important predictions in biology, and its influence has spread from evolutionary biology to other fields including the social sciences. Whereas many feel that Hamilton's rule provides valuable intuition, there is disagreement even among experts as to how the quantities B, R, and C should be defined for a given system. Here, we investigate a widely endorsed formulation of Hamilton's rule, which is said to be as general as natural selection itself. We show that, in this formulation, Hamilton's rule does not make predictions and cannot be tested empirically. It turns out that the parameters B and C depend on the change in average trait value and therefore cannot predict that change. In this formulation, which has been called "exact and general" by its proponents, Hamilton's rule can "predict" only the data that have already been given.
AB - Hamilton's rule asserts that a trait is favored by natural selection if the benefit to others, B, multiplied by relatedness, R, exceeds the cost to self, C. Specifically, Hamilton's rule states that the change in average trait value in a population is proportional to BR-C. This rule is commonly believed to be a natural law making important predictions in biology, and its influence has spread from evolutionary biology to other fields including the social sciences. Whereas many feel that Hamilton's rule provides valuable intuition, there is disagreement even among experts as to how the quantities B, R, and C should be defined for a given system. Here, we investigate a widely endorsed formulation of Hamilton's rule, which is said to be as general as natural selection itself. We show that, in this formulation, Hamilton's rule does not make predictions and cannot be tested empirically. It turns out that the parameters B and C depend on the change in average trait value and therefore cannot predict that change. In this formulation, which has been called "exact and general" by its proponents, Hamilton's rule can "predict" only the data that have already been given.
KW - Cooperation
KW - Evolution
KW - Kin selection
KW - Sociobiology
UR - http://www.scopus.com/inward/record.url?scp=85019974684&partnerID=8YFLogxK
U2 - 10.1073/pnas.1701805114
DO - 10.1073/pnas.1701805114
M3 - Article
C2 - 28512224
AN - SCOPUS:85019974684
SN - 0027-8424
VL - 114
SP - 5665
EP - 5670
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 22
ER -