The EXO-200 detector, part II: Auxiliary systems

N. Ackerman, J. Albert, M. Auger, D. J. Auty, I. Badhrees, P. S. Barbeau, L. Bartoszek, E. Baussan, V. Belov, C. Benitez-Medina, T. Bhatta, M. Breidenbach, T. Brunner, G. F. Cao, W. R. Cen, C. Chambers, B. Cleveland, R. Conley, S. Cook, M. CoonW. Craddock, A. Craycraft, W. Cree, T. Daniels, L. Darroch, S. J. Daugherty, J. Daughhetee, C. G. Davis, J. Davis, S. Delaquis, A. Der Mesrobian-Kabakian, R. Devoe, T. Didberidze, J. Dilling, A. Dobi, A. G. Dolgolenko, M. J. Dolinski, M. Dunford, J. Echevers, L. Espic, W. Fairbank, D. Fairbank, J. Farine, W. Feldmeier, S. Feyzbakhsh, P. Fierlinger, K. Fouts, D. Franco, D. Freytag, D. Fudenberg, P. Gautam, G. Giroux, R. Gornea, K. Graham, G. Gratta, C. Hagemann, C. Hall, K. Hall, G. Haller, E. V. Hansen, C. Hargrove, R. Herbst, S. Herrin, J. Hodgson, M. Hughes, A. Iverson, A. Jamil, C. Jessiman, M. J. Jewell, A. Johnson, T. N. Johnson, S. Johnston, A. Karelin, L. J. Kaufman, R. Killick, T. Koffas, S. Kravitz, R. Krücken, A. Kuchenkov, K. S. Kumar, Y. Lan, A. Larson, D. S. Leonard, F. Leonard, F. Leport, G. S. Li, S. Li, Z. Li, C. Licciardi, Y. H. Lin, D. Mackay, R. Maclellan, M. Marino, J. M. Martin, Y. Martin, T. McElroy, K. McFarlane, T. Michel, B. Mong, D. C. Moore, K. Murray, R. Neilson, R. Nelson, O. Njoya, O. Nusair, K. O'Sullivan, A. Odian, I. Ostrovskiy, C. Ouellet, A. Piepke, A. Pocar, C. Y. Prescott, K. Pushkin, F. Retiere, A. Rivas, A. L. Robinson, E. Rollin, P. C. Rowson, M. P. Rozo, J. Runge, J. J. Russell, S. Schmidt, A. Schubert, D. Sinclair, K. Skarpaas, S. Slutsky, E. Smith, A. K. Soma, V. Stekhanov, V. Strickland, M. Swift, M. Tarka, J. Todd, T. Tolba, D. Tosi, T. I. Totev, R. Tsang, K. Twelker, B. Veenstra, V. Veeraraghavan, J. L. Vuilleumier, J. M. Vuilleumier, M. Wagenpfeil, A. Waite, J. Walton, T. Walton, K. Wamba, J. Watkins, M. Weber, L. J. Wen, U. Wichoski, M. Wittgen, J. Wodin, J. Wood, G. Wrede, S. X. Wu, Q. Xia, L. Yang, Y. R. Yen, O. Ya Zeldovich, T. Ziegler

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

The EXO-200 experiment searched for neutrinoless double-beta decay of 136Xe with a single-phase liquid xenon detector. It used an active mass of 110 kg of 80.6%-enriched liquid xenon in an ultra-low background time projection chamber with ionization and scintillation detection and readout. This paper describes the design and performance of the various support systems necessary for detector operation, including cryogenics, xenon handling, and controls. Novel features of the system were driven by the need to protect the thin-walled detector chamber containing the liquid xenon, to achieve high chemical purity of the Xe, and to maintain thermal uniformity across the detector.

Original languageEnglish
Article numberP02015
JournalJournal of Instrumentation
Volume17
Issue number2
DOIs
StatePublished - Feb 1 2022
Externally publishedYes

Keywords

  • Cryogenic detectors
  • Double-beta decay detectors
  • Liquid detectors
  • Time projection Chambers (TPC)

Fingerprint

Dive into the research topics of 'The EXO-200 detector, part II: Auxiliary systems'. Together they form a unique fingerprint.

Cite this