The effects of fuel composition and compression ratio on thermal efficiency in an HCCI engine

James P. Szybist, Bruce G. Bunting

Research output: Contribution to journalConference articlepeer-review

21 Scopus citations

Abstract

The effects of variable compression ratio (CR) and fuel composition on thermal efficiency were investigated in a homogeneous charge compression ignition (HCCI) engine using blends of n-heptane and toluene with research octane numbers (RON) of 0 to 90. Experiments were conducted by performing CR sweeps at multiple intake temperatures using both unthrottled operation, and constant Φ conditions by throttling to compensate for varying air density. It was found that CR is effective at changing and controlling the HCCI combustion phasing midpoint, denoted here as CA 50. Thermal efficiency was a strong function of CA 50, with overly advanced CA 50 leading to efficiency decreases. Increases in CR at a constant CA 50 for a given fuel composition did, in most cases, increase efficiency, but the relationship was weaker than the dependence of efficiency on CA 50. Higher toluene content fuels require higher CR to achieve a given CA 50, but these fuels did not gain a proportionate efficiency increase. For example, n-heptane achieved an indicated thermal efficiency (ITE) of 38% at a CR of 9:1, whereas a 50 wt% blend of toluene with n-heptane required a CR of 12:1 to achieve the same ITE. A simple energy balance showed that the cooling losses for the higher toluene fuels were higher, thereby offsetting the expected efficiency increases. The higher CR required for the higher toluene fuels were also accompanied by higher maximum pressure rise rates. Cooling losses paralleled the maximum pressure rise, and were likely due to a linear degradation of the thermal boundary layer by increasing pressure rise rates in the combustion chamber.

Original languageEnglish
JournalSAE Technical Papers
DOIs
StatePublished - 2007
EventPowertrain and Fluid Systems Conference and Exhibition - Rosemont, IL, United States
Duration: Oct 29 2007Nov 1 2007

Fingerprint

Dive into the research topics of 'The effects of fuel composition and compression ratio on thermal efficiency in an HCCI engine'. Together they form a unique fingerprint.

Cite this