Abstract
Material printed with large scale additive manufacturing systems such as the Big Area Additive Manufacturing (BAAM) system experience a wide range of shear rates during the extrusion process. The shear rate can vary over five orders of magnitude as the material passes through the single screw extruder and is deposited onto previous layers. When fiber reinforced materials are deposited, the fibers can become highly aligned in the direction of flow due to the high shear stresses experienced as the material passes through the nozzle. Therefore, accurate analysis of the viscoelastic response of a polymer during extrusion should replicate these conditions as closely as possible. This study evaluates the effect of a pre-conditioning shear strain on the extrusion viscosity of carbon fiber reinforced acrylonitrile butadiene styrene (ABS).
Original language | English |
---|---|
Pages | 1102-1111 |
Number of pages | 10 |
State | Published - 2020 |
Event | 29th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2018 - Austin, United States Duration: Aug 13 2018 → Aug 15 2018 |
Conference
Conference | 29th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2018 |
---|---|
Country/Territory | United States |
City | Austin |
Period | 08/13/18 → 08/15/18 |
Funding
Research sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.
Funders | Funder number |
---|---|
U.S. Department of Energy | |
Advanced Manufacturing Office | DE-AC05-00OR22725 |
Office of Energy Efficiency and Renewable Energy |