Abstract
When exposed to irradiation—e.g., in nuclear power plant environments—minerals may experience alterations in their atomic structure which, in turn, result in changes in their physical and chemical properties. Herein, we mimic via Ar+ implantation the effects of neutron irradiation on calcite (CaCO3) and dolomite (CaMg(CO3)2) – two carbonate minerals that often find use as aggregates in concrete: a material that is extensively used in the construction of critical structural and safety components in nuclear power plants. By a pioneering combination of nanoscale quantifications of mineral dissolution rates (i.e., a proxy for chemical durability) in alkaline solutions, vibrational (infrared and Raman) spectroscopy, and molecular simulations, we find that irradiation minimally affects the atomic structure and properties of these carbonate minerals. This insensitivity to radiation arises from the predominantly ionic nature of the interatomic bonds in these minerals which can relax and recover their initial configuration, thus ensuring minimal damage and permanent alterations to these minerals following radiation exposure. The outcomes have significant implications on the selection, use, and specification of mineral aggregates for use in nuclear concrete construction.
Original language | English |
---|---|
Article number | 36 |
Journal | npj Materials Degradation |
Volume | 3 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2019 |
Funding
This work forms a part of Y.-H. Hsiao’s Ph.D. dissertation submitted to the University of California, Los Angeles (UCLA).81 As such, the authors acknowledge financial support for this research provisioned by the: Department of Energy’s Nuclear Energy University Program (DOE-NEUP: DE-NE0008398), National Science Foundation (CAREER Award: 1253269), and University of California, Los Angeles (UCLA). The contents of this paper reflect the views and opinions of the authors who are responsible for the accuracy of the data presented. This research was carried out in the Laboratory for the Chemistry of Construction Materials (LC2), Molecular Instrumentation Center, and Laboratory for the Physics of AmoRphous and Inorganic Solids (PARISlab) at UCLA. As such, the authors acknowledge the support that has made these laboratories and their operations possible.