Abstract
The effect of Si contamination when using B to improve the creep properties of a Ni-based superalloy was investigated using advanced characterization techniques and first-principles simulations on alloys with high and low B levels with varying Si contents. The positive effect of B segregation along grain boundaries on the creep properties was mitigated by the presence of Si which showed a similar segregation preference. Density functional theory calculations were used for validation by calculating grain boundary cleavage energies. Silicon was shown to decrease grain boundary cohesion which offsets the positive effect of B.
Original language | English |
---|---|
Article number | 113971 |
Journal | Scripta Materialia |
Volume | 201 |
DOIs | |
State | Published - Aug 2021 |
Funding
This work was funded by the Department of Energy, National Energy Technology Laboratory , an agency of the United States Government, through a support contract with Leidos Research Support Team (LRST). Neither the United States Government nor any agency thereof, nor any of their employees, nor LRST, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Keywords
- Atom-probe tomography
- Boron
- Creep
- Interfaces
- Superalloy