The Dark Side of Dynamic Routing Neural Networks: Towards Efficiency Backdoor Injection

Simin Chen, Hanlin Chen, Mirazul Haque, Cong Liu, Wei Yang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

Recent advancements in deploying deep neural networks (DNNs) on resource-constrained devices have generated interest in input-adaptive dynamic neural networks (DyNNs). DyNNs offer more efficient inferences and enable the deployment of DNNs on devices with limited resources, such as mobile devices. However, we have discovered a new vulnerability in DyNNs that could potentially compromise their efficiency. Specifically, we investigate whether adversaries can manipulate DyNNs' computational costs to create a false sense of efficiency. To address this question, we propose EfficFrog, an adversarial attack that injects universal efficiency backdoors in DyNNs. To inject a backdoor trigger into DyNNs, EfficFrog poisons only a minimal percentage of the DyNNs' training data. During the inference phase, EfficFrog can slow down the backdoored DyNNs and abuse the computational resources of systems running DyNNs by adding the trigger to any input. To evaluate EfficFrog, we tested it on three DNN backbone architectures (based on VGG16, MobileNet, and ResNet56) using two popular datasets (CIFAR-10 and Tiny ImageNet). Our results demonstrate that EfficFrog reduces the efficiency of DyNNs on triggered input samples while keeping the efficiency of clean samples almost the same.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
PublisherIEEE Computer Society
Pages24585-24594
Number of pages10
ISBN (Electronic)9798350301298
DOIs
StatePublished - 2023
Externally publishedYes
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada
Duration: Jun 18 2023Jun 22 2023

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2023-June
ISSN (Print)1063-6919

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Country/TerritoryCanada
CityVancouver
Period06/18/2306/22/23

Funding

This work was supported by NSF CNS 2135625, NSF CCF 2146443, CPS 2038727, CNS Career 1750263, and DARPA Shell grant.

Keywords

  • Adversarial attack and defense

Fingerprint

Dive into the research topics of 'The Dark Side of Dynamic Routing Neural Networks: Towards Efficiency Backdoor Injection'. Together they form a unique fingerprint.

Cite this