The atomic scale modeling of dislocation-obstacle interactions in irradiated metals

D. J. Bacon, Yu N. Osetsky

Research output: Contribution to journalReview articlepeer-review

23 Scopus citations

Abstract

Irradiation of metals with high-energy particles produces nano-scale defect clusters such as voids, dislocation loops, stacking-fault tetrahedra, and irradiation-induced precipitates. They are obstacles to dislocation glide and give rise to hardening and, in some conditions, deformation localization. Atomic-scale computer simulation has been developed to provide detailed information on how obstacle structure, stress, strain rate, and temperature influence these effects. Some recent results of modeling dislocations gliding under stress against obstacles in a variety of metals across a range of temperatures are considered. The effects observed include obstacle cutting, absorption, and drag. Although some processes can be represented within the continuum treatment of crystal defects, others cannot.

Original languageEnglish
Pages (from-to)40-45
Number of pages6
JournalJOM
Volume59
Issue number4
DOIs
StatePublished - Apr 2007

Funding

Research supported by a grant from the U.K. Engineering and Physical Sci ence Research Council and sponsored by the Division of Materials Sciences and Engineering, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. The authors thank Dr. David Rodney for his collaboration with the results in the stacking fault tetrahedra section.

Fingerprint

Dive into the research topics of 'The atomic scale modeling of dislocation-obstacle interactions in irradiated metals'. Together they form a unique fingerprint.

Cite this