Teaching experimental design in a fluid mechanics course

Seth Norberg, Tim Ashcraft, Matthew Miller, Michael J. Benson

Research output: Contribution to journalConference articlepeer-review

2 Scopus citations

Abstract

In this paper we discuss the development and implementation of a new Design of Experiment (DoE) experience in the junior-level Thermal-Fluid Systems course. The goal of the DoE is to teach students about dynamic similarity, uncertainty quantification, and technical communications through a hands-on experience with direct connections to real-world applications. In the newly-designed DoE, students must determine whether they can accurately predict pressure drop in real-world pipe systems-including an oil pipeline, a ventilation duct, a natural gas line, and a water supply line-using the equipment we provide. Although the equipment is prescribed, the procedure is not, which has the benefit of minimizing material requirements while allowing students the freedom to pursue a unique approach. The experience is divided into stages with a mixture of individual and group efforts. Students begin by deriving the relevant equations and crafting an experimental procedure as an individual. They then come together in groups of three or four to conduct the experiment and analyze the data, which includes uncertainty quantification. An instructor provides feedback on the data analysis portion before students communicate their results in a short lab report with extensive appendices. Throughout the experience students are required to communicate the limitations of their experiment by quantifying uncertainty and questioning the validity of their assumptions. Overall, the DoE is an exercise in critical thinking, data gathering, analysis, and interpretation of results. We present details of the DoE assignment, assessment of student learning, student feedback from course evaluations, and recommendations for instructors seeking to implement similar projects in their courses.

Original languageEnglish
JournalASEE Annual Conference and Exposition, Conference Proceedings
Volume2018-June
StatePublished - Jun 23 2018
Externally publishedYes
Event125th ASEE Annual Conference and Exposition - Salt Lake City, United States
Duration: Jun 23 2018Dec 27 2018

Fingerprint

Dive into the research topics of 'Teaching experimental design in a fluid mechanics course'. Together they form a unique fingerprint.

Cite this