Abstract
Dynamic wireless power transfer (DWPT) has been proposed as a solution to power electric vehicles (EVs)on future electrified highways. However, there has been little consideration of how the coordination of electric connected and automated vehicles (CAVs) could impact DWPT system designs in future scenarios. In this paper, a DWPT system design is optimized for a future highway where CAVs travel in coordinated groups, with each CAV in the group powered by the same DWPT section. As the distribution of smaller light-duty vehicles (LDVs) and larger heavy-duty vehicles (HDVs) in each group is varied, the DWPT system power level, transmitter length, and the equivalent receiver loads are adjusted to minimize the infrastructure requirements and energy losses of the DWPT system. The outputs from this analysis are used to determine the optimal groupings of vehicles for a given DWPT system. The analysis suggests that CAV coordination could aid the deployment of DWPT systems and reduce the overall infrastructure and energy losses of DWPT systems.
Original language | English |
---|---|
Title of host publication | ITEC 2019 - 2019 IEEE Transportation Electrification Conference and Expo |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781538693100 |
DOIs | |
State | Published - Jun 2019 |
Event | 2019 IEEE Transportation Electrification Conference and Expo, ITEC 2019 - Novi, United States Duration: Jun 19 2019 → Jun 21 2019 |
Publication series
Name | ITEC 2019 - 2019 IEEE Transportation Electrification Conference and Expo |
---|
Conference
Conference | 2019 IEEE Transportation Electrification Conference and Expo, ITEC 2019 |
---|---|
Country/Territory | United States |
City | Novi |
Period | 06/19/19 → 06/21/19 |
Funding
This manuscript has been authored by the Oak Ridge National Laboratory operated by the UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Keywords
- Autonomous vehicles
- automated highways
- wireless power transmission