Synthesis, Crystal and Electronic Structure, and Thermal Conductivity Investigation of the Hollandite-like CsxCr5Te8 Phases (0.73 < x < 1)

Hugo Bouteiller, Bruno Fontaine, Takao Mori, Franck Gascoin, Jean François Halet, David Berthebaud

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

This article presents a comprehensive study on the synthesis and structural and thermal conductivity properties of cesium-inserted chromium tellurides of formula CsxCr5Te8. Single crystals of three different compositions (x = 0.73, 0.91, and 0.97) were successfully synthesized and suggested the existence of a solid solution in the range 0.73 < x < 1. Through a detailed single-crystal characterization, the complete structure of these compounds is determined, revealing a distinct B-type hollandite-like structural form derived from the hollandite structure, in contrast to the more commonly observed A-type pseudo-hollandite in AM5X8-type chalcogenides (A = cation, M = transition metal, and X = chalcogen). Periodic density functional theory calculations predict the Cs0.73Cr5Te8 composition as the most stable, with a metallic conductive behavior. The thermal conductivity of bulk CsxCr5Te8 samples is measured to be 1.4 W m-1 K-1 at 300 K and increases with temperature up to 2 W m-1 K-1 at 673 K.

Original languageEnglish
Pages (from-to)16905-16912
Number of pages8
JournalInorganic Chemistry
Volume62
Issue number41
DOIs
StatePublished - Oct 16 2023
Externally publishedYes

Fingerprint

Dive into the research topics of 'Synthesis, Crystal and Electronic Structure, and Thermal Conductivity Investigation of the Hollandite-like CsxCr5Te8 Phases (0.73 < x < 1)'. Together they form a unique fingerprint.

Cite this