TY - JOUR
T1 - Synthesis and characterization of new fluoride-containing manganese vanadates A2Mn2V2O7F2 (A=Rb, Cs) and Mn2VO4F
AU - Sanjeewa, Liurukara D.
AU - McGuire, Michael A.
AU - Smith Pellizzeri, Tiffany M.
AU - McMillen, Colin D.
AU - Ovidiu Garlea, V.
AU - Willett, Daniel
AU - Chumanov, George
AU - Kolis, Joseph W.
N1 - Publisher Copyright:
© 2016 Elsevier Inc. All rights reserved.
PY - 2016/9/1
Y1 - 2016/9/1
N2 - Large single crystals of A2Mn2V2O7F2 (A=Rb, Cs) and Mn2VO4F were grown using a high-temperature (~600 °C) hydrothermal technique. Single crystal X-ray diffraction and powder X-ray diffraction were utilized to characterize the structures, which both possess MnO4F2 building blocks. The A2Mn2V2O7F2 series crystallizes as a new structure type in space group Pbcn (No. 60), Z=4 (Rb2Mn2V2O7F2: a=7.4389(17) Å, b=11.574(3) Å, c=10.914(2) Å; Cs2Mn2V2O7F2: a=7.5615(15) Å, b=11.745(2) Å, c=11.127(2) Å). The structure is composed of zigzag chains of edge-sharing MnO4F2 units running along the a-axis, and interconnected through V2O7 pyrovanadate groups. Temperature dependent magnetic susceptibility measurements on this interesting one-dimensional structural feature based on Mn2+ indicated that Cs2Mn2V2O7F2 is antiferromagnetic with a Neél temperature, TN=~3 K and a Weiss constant, θ, of -11.7(1) K. Raman and infrared spectra were also analyzed to identify the fundamental V-O vibrational modes in Cs2Mn2V2O7F2. Mn2(VO4)F crystalizes in the monoclinic space group of C2/c (no. 15), Z=8 with unit cell parameters of a=13.559(2) Å, b=6.8036(7) Å, c=10.1408(13) Å and β=116.16(3)°. The structure is associated with those of triplite and wagnerite. Dynamic fluorine disorder gives rise to complex alternating chains of five-and six-coordinate Mn2+. These interpenetrating chains are additionally connected through isolated VO4 tetrahedra to form the condensed structure.
AB - Large single crystals of A2Mn2V2O7F2 (A=Rb, Cs) and Mn2VO4F were grown using a high-temperature (~600 °C) hydrothermal technique. Single crystal X-ray diffraction and powder X-ray diffraction were utilized to characterize the structures, which both possess MnO4F2 building blocks. The A2Mn2V2O7F2 series crystallizes as a new structure type in space group Pbcn (No. 60), Z=4 (Rb2Mn2V2O7F2: a=7.4389(17) Å, b=11.574(3) Å, c=10.914(2) Å; Cs2Mn2V2O7F2: a=7.5615(15) Å, b=11.745(2) Å, c=11.127(2) Å). The structure is composed of zigzag chains of edge-sharing MnO4F2 units running along the a-axis, and interconnected through V2O7 pyrovanadate groups. Temperature dependent magnetic susceptibility measurements on this interesting one-dimensional structural feature based on Mn2+ indicated that Cs2Mn2V2O7F2 is antiferromagnetic with a Neél temperature, TN=~3 K and a Weiss constant, θ, of -11.7(1) K. Raman and infrared spectra were also analyzed to identify the fundamental V-O vibrational modes in Cs2Mn2V2O7F2. Mn2(VO4)F crystalizes in the monoclinic space group of C2/c (no. 15), Z=8 with unit cell parameters of a=13.559(2) Å, b=6.8036(7) Å, c=10.1408(13) Å and β=116.16(3)°. The structure is associated with those of triplite and wagnerite. Dynamic fluorine disorder gives rise to complex alternating chains of five-and six-coordinate Mn2+. These interpenetrating chains are additionally connected through isolated VO4 tetrahedra to form the condensed structure.
KW - Antiferromagnetism
KW - Hydrothermal
KW - Manganese(II)
KW - Vanadate
UR - http://www.scopus.com/inward/record.url?scp=84973126850&partnerID=8YFLogxK
U2 - 10.1016/j.jssc.2016.05.008
DO - 10.1016/j.jssc.2016.05.008
M3 - Article
AN - SCOPUS:84973126850
SN - 0022-4596
VL - 241
SP - 30
EP - 37
JO - Journal of Solid State Chemistry
JF - Journal of Solid State Chemistry
ER -