Synergistic Hybrid-Ligand Passivation of Perovskite Quantum Dots: Suppressing Reduced-Dimensionality and Enhancing Optoelectronic Performance

Sanghun Han, Woo Hyeon Jeong, Gayoung Seo, Seongmin Choi, Dong Gyu Lee, Weon Sik Chae, Hyungju Ahn, Tae Kyung Lee, Hyosung Choi, Jongmin Choi, Bo Ram Lee, Younghoon Kim

Research output: Contribution to journalArticlepeer-review

Abstract

In terms of surface passivation for realizing efficient CsPbI3-perovskite quantum dot (CsPbI3-PQD)-based optoelectronic devices, phenethylammonium iodide (PEAI) is widely used during the ligand exchange. However, the PEA cation, due to its large ionic radius incompatible with the 3D perovskite framework, acts as an organic spacer within polycrystalline perovskites, leading to the formation of reduced dimensional perovskites (RDPs). Despite sharing the identical 3D perovskite framework, the influence of PEAI on the structure of CsPbI3-PQDs remains unexplored. Here, it is revealed that PEAI can induce the formation of high-n RDPs (n > 2) within the CsPbI3-PQD solids, but these high-n RDPs undergo an undesirable phase transition to low-n RDPs, leading to the structural and optical degradation of CsPbI3-PQDs. To address the PEAI-induced issue, we employ triphenylphosphine oxide (TPPO) as an ancillary ligand during the ligand exchange process. The incorporation of TPPO prevents H2O penetration and regulates the rapid diffusion of PEAI, suppressing the formation of low-n RDPs. Moreover, TPPO can passivate the uncoordinated Pb2+ sites, reducing the nonradiative recombination. This hybrid-ligand exchange strategy using both PEAI and TPPO enables realizing efficient and stable CsPbI3-PQD-based light-emitting diode (external quantum efficiency of 21.8%) and solar cell (power conversion efficiency of 15.3%) devices.

Original languageEnglish
JournalAdvanced Materials
DOIs
StateAccepted/In press - 2025
Externally publishedYes

Keywords

  • all-inorganic CsPbI
  • ligand exchanges
  • light-emitting diodes
  • perovskite quantum dots
  • reduced dimensional perovskites
  • solar cells

Fingerprint

Dive into the research topics of 'Synergistic Hybrid-Ligand Passivation of Perovskite Quantum Dots: Suppressing Reduced-Dimensionality and Enhancing Optoelectronic Performance'. Together they form a unique fingerprint.

Cite this