Abstract
Control of integrated photovoltaic (PV) plants with energy storage systems (ESSs) has become an important research and development topic in recent times. In this context, a Multi-port Autonomous Reconfigurable Solar (MARS) plant that integrates PV and ESS to alternating current transmission grid and high-voltage direct current (HVdc) link is studied in this paper. With penetration of power electronic based resources in the grid, the grid's capability to recover from frequency or voltage disturbances are reduced. Therefore, one of the vital objectives of any new grid integrated power electronic resource is to provide advanced control functions like voltage and frequency support to the grid during disturbances. In this research work, a detailed implementation of a synchronverter-based control algorithm of MARS is presented. The proposed control algorithm and the MARS control architecture are evaluated through simulations on PSCAD/EMTDC simulation platform to showcase the performance in different operating conditions. In addition, they are evaluated in Opal-RT offline simulation models which can also be used to perform control-hardware-in-the-loop (cHIL) tests.
Original language | English |
---|---|
Title of host publication | ECCE 2020 - IEEE Energy Conversion Congress and Exposition |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 5019-5026 |
Number of pages | 8 |
ISBN (Electronic) | 9781728158266 |
DOIs | |
State | Published - Oct 11 2020 |
Event | 12th Annual IEEE Energy Conversion Congress and Exposition, ECCE 2020 - Virtual, Detroit, United States Duration: Oct 11 2020 → Oct 15 2020 |
Publication series
Name | ECCE 2020 - IEEE Energy Conversion Congress and Exposition |
---|
Conference
Conference | 12th Annual IEEE Energy Conversion Congress and Exposition, ECCE 2020 |
---|---|
Country/Territory | United States |
City | Virtual, Detroit |
Period | 10/11/20 → 10/15/20 |
Funding
This paper is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Agreement Number 34019. Authors would like to thank Dr. Jiuping Pan, Dr. Jian Fu, Dr. Hariharan Krishnaswami, and Dr. John Seuss for overseeing the project developments and providing guidance.
Keywords
- ESS
- HVdc
- PV
- Synchronverter
- VSG