Sustainable dropwise condensation enabled ultraefficient heat pipes

Wei Chang, Kai Luo, Pengtao Wang, Ahmed A. Abdulshaheed, Chen Li

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Heat pipes play a critical role in determining the operations, safety, and energy efficiency of electronics. The main focus to improve the heat pipe performance is on the evaporator design or wicking structures. However, the intrinsic limitation comes from the condenser, which is fundamentally constrained by inefficient filmwise condensation (FWC). In this study, we successfully achieved a peak effective thermal conductivity (keff) of ~140 kW/(m·K) on widely used groove heat pipes by implementing sustianble dropwise condensation (DWC) and integrating with enhanced evaporator. To better understand the working mechanisms of the ultraefficient heat pipe, both the evaporator and condenser of the heat pipes have been modified accordingly. Our results show that up to 296% enhancements on the keff can be achieved under various inclination angles by only inducing DWC in the condenser section. The drawback of temperature fluctuations induced by DWC in smooth heat pipes appears to be effectively solved using the grooves-wicking structure. Furthermore, by integrating the nanostructured evaporator, the keff of the heat pipe can be boosted up to 517% compared to conventional groove heat pipes. This study, for the first time, demonstrates the huge potential of engineering both the condenser and evaporator simultaneously in developing ultraefficient heat pipes.

Original languageEnglish
Article numbere43
JournalDroplet
Volume2
Issue number1
DOIs
StatePublished - Jan 2023

Fingerprint

Dive into the research topics of 'Sustainable dropwise condensation enabled ultraefficient heat pipes'. Together they form a unique fingerprint.

Cite this