@inproceedings{b12b5a5fe25d4c7c93876de4038eec6a,
title = "Survey of image denoising methods for medical image classification",
abstract = "Medical imaging devices, such as X-ray machines, inherently produce images that suffer from visual noise. Our objectives were to (i.) determine the effect of image denoising on a medical image classification task, and (ii.) determine if there exists a correlation between image denoising performance and medical image classification performance. We performed the medical image classification task on chest X-rays using the DenseNet-121 convolutional neural network (CNN) and used the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) metrics as the image denoising performance measures. We first found that different denoising methods can make a statistically significant difference in classification performance for select labels. We also found that denoising methods affect fine-tuned models more than randomly-initialized models and that fine-tuned models have significantly higher and more uniform performance than randomly-initialized models. Lastly, we found that there is no significant correlation between PSNR and SSIM values and classification performance for our task.",
keywords = "deep learning, image classication, image denoising, machine learning, x-ray image denoising",
author = "Michael, {Peter F.} and Yoon, {Hong Jun}",
note = "Publisher Copyright: {\textcopyright} 2020 SPIE.; Medical Imaging 2020: Computer-Aided Diagnosis ; Conference date: 16-02-2020 Through 19-02-2020",
year = "2020",
doi = "10.1117/12.2549695",
language = "English",
series = "Progress in Biomedical Optics and Imaging - Proceedings of SPIE",
publisher = "SPIE",
editor = "Hahn, {Horst K.} and Mazurowski, {Maciej A.}",
booktitle = "Medical Imaging 2020",
}