Survey of image denoising methods for medical image classification

Peter F. Michael, Hong Jun Yoon

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Medical imaging devices, such as X-ray machines, inherently produce images that suffer from visual noise. Our objectives were to (i.) determine the effect of image denoising on a medical image classification task, and (ii.) determine if there exists a correlation between image denoising performance and medical image classification performance. We performed the medical image classification task on chest X-rays using the DenseNet-121 convolutional neural network (CNN) and used the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) metrics as the image denoising performance measures. We first found that different denoising methods can make a statistically significant difference in classification performance for select labels. We also found that denoising methods affect fine-tuned models more than randomly-initialized models and that fine-tuned models have significantly higher and more uniform performance than randomly-initialized models. Lastly, we found that there is no significant correlation between PSNR and SSIM values and classification performance for our task.

Original languageEnglish
Title of host publicationMedical Imaging 2020
Subtitle of host publicationComputer-Aided Diagnosis
EditorsHorst K. Hahn, Maciej A. Mazurowski
PublisherSPIE
ISBN (Electronic)9781510633957
DOIs
StatePublished - 2020
EventMedical Imaging 2020: Computer-Aided Diagnosis - Houston, United States
Duration: Feb 16 2020Feb 19 2020

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume11314
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2020: Computer-Aided Diagnosis
Country/TerritoryUnited States
CityHouston
Period02/16/2002/19/20

Keywords

  • deep learning
  • image classication
  • image denoising
  • machine learning
  • x-ray image denoising

Fingerprint

Dive into the research topics of 'Survey of image denoising methods for medical image classification'. Together they form a unique fingerprint.

Cite this