Abstract
Over the last few years, work in our laboratories in Ames has focussed on elucidating the surface characteristics of Al-based quasicrystalline materials, namely icosahedral (i-) Al-Cu-Fe and i-Al-Pd-Mn. Our work involves the study of the clean surfaces of these materials under ultrahigh vacuum conditions. We find that surfaces cleaned by Ar+ sputtering are depleted in Al relative to the bulk composition. Single grains, after sputtering, undergo a two-stage regrowth process as they are annealed. After heating to about 600 K, a crystalline overlayer is formed. This is rather abruptly replaced at about 750 K by a surface that appears quasicrystalline within the resolution of the experimental techniques used. Calculations based on low-energy electron diffraction (LEED) measurements of this higher temperature state indicate that the Al-rich layers in the bulk model of these materials are the favored surface terminations. Results of low-energy ion scattering (LEIS) corroborate this finding. Consistent with this, we find that the oxidation behavior and general reactivity of these materials are analogous to pure Al.
Original language | English |
---|---|
Pages (from-to) | 219-230 |
Number of pages | 12 |
Journal | Materials Research Society Symposium - Proceedings |
Volume | 553 |
State | Published - 1999 |
Externally published | Yes |
Event | Proceedings of the 1998 MRS Fall Meeting - The Symposium 'Advanced Catalytic Materials-1998' - Boston, MA, USA Duration: Nov 30 1998 → Dec 3 1998 |