Suppressing Universal Cathode Crossover in High-Energy Lithium Metal Batteries via a Versatile Interlayer Design**

Chuyi Xie, Chen Zhao, Heonjae Jeong, Tianyi Li, Luxi Li, Wenqian Xu, Zhenzhen Yang, Cong Lin, Qiang Liu, Lei Cheng, Xingkang Huang, Gui Liang Xu, Khalil Amine, Guohua Chen

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The universal cathode crossover such as chemical and oxygen has been significantly overlooked in lithium metal batteries using high-energy cathodes which leads to severe capacity degradation and raises serious safety concerns. Herein, a versatile and thin (≈25 μm) interlayer composed of multifunctional active sites was developed to simultaneously regulate the Li deposition process and suppress the cathode crossover. The as-induced dual-gradient solid-electrolyte interphase combined with abundant lithiophilic sites enable stable Li stripping/plating process even under high current density of 10 mA cm−2. Moreover, X-ray photoelectron spectroscopy and synchrotron X-ray experiments revealed that N-rich framework and CoZn dual active sites can effectively mitigate the undesired cathode crossover, hence significantly minimizing Li corrosion. Therefore, assembled lithium metal cells using various high-energy cathode materials including LiNi0.7Mn0.2Co0.1O2, Li1.2Co0.1Mn0.55Ni0.15O2, and sulfur demonstrate significantly improved cycling stability with high cathode loading.

Original languageEnglish
Article numbere202217476
JournalAngewandte Chemie - International Edition
Volume62
Issue number19
DOIs
StatePublished - May 2 2023
Externally publishedYes

Keywords

  • Cathode Cross-over
  • High-Energy Cathode
  • Lithium-Metal Batteries
  • Solid-Electrolyte Interphase

Fingerprint

Dive into the research topics of 'Suppressing Universal Cathode Crossover in High-Energy Lithium Metal Batteries via a Versatile Interlayer Design**'. Together they form a unique fingerprint.

Cite this