Superluminous supernovae from the Dark Energy Survey

DES Collaboration

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

We present a sample of 21 hydrogen-free superluminous supernovae (SLSNe-I) and one hydrogen-rich SLSN (SLSN-II) detected during the five-year Dark Energy Survey (DES). These SNe, located in the redshift range 0.220 < z < 1.998, represent the largest homogeneously selected sample of SLSN events at high redshift. We present the observed g, r, i, z light curves for these SNe, which we interpolate using Gaussian processes. The resulting light curves are analysed to determine the luminosity function of SLSNe-I, and their evolutionary timescales. The DES SLSN-I sample significantly broadens the distribution of SLSN-I light-curve properties when combined with existing samples from the literature. We fit a magnetar model to our SLSNe, and find that this model alone is unable to replicate the behaviour of many of the bolometric light curves. We search the DES SLSN-I light curves for the presence of initial peaks prior to the main light-curve peak. Using a shock breakout model, our Monte Carlo search finds that 3 of our 14 events with pre-max data display such initial peaks. However, 10 events show no evidence for such peaks, in some cases down to an absolute magnitude of <−16, suggesting that such features are not ubiquitous to all SLSN-I events. We also identify a red pre-peak feature within the light curve of one SLSN, which is comparable to that observed within SN2018bsz.

Original languageEnglish
Pages (from-to)2215-2241
Number of pages27
JournalMonthly Notices of the Royal Astronomical Society
Volume487
Issue number2
DOIs
StatePublished - 2021

Funding

The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA programme of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020, and the Brazilian Instituto Na-cional de Ciência e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2). Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovac¸ão (Brazil). Gemini observations were obtained under programme NOAO GS-2015B-Q-7. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundac¸ão Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovac¸ão, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. We acknowledge support from EU/FP7-ERC grant 615929. CRA and MS thank the organizers and participants of the Munich Institute for Astro-and Particle Physics (MIAPP) workshop ‘Superluminous supernovae in the next decade’. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Keck observations were taken under programmes U021LA, U048LA, and U150D. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

FundersFunder number
Brazilian Instituto Na-cional de Ciência e Tecnologia
Collaborating Institutions in the Dark Energy Survey
EU/FP7-ERC
INCT
Ministério da Ciência
Ministério da Ciência, Tecnologia e Inovac¸ão (Brazil)
Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University
National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign
Science and Technology Facilities Council of the United Kingdom
National Science FoundationAST-1138766, AST-1536171
U.S. Department of EnergyDE-AC02-05CH11231
W. M. Keck Foundation
Ohio State University
University of Chicago
Seventh Framework Programme
Higher Education Funding Council for England
National Research Council
European Commission
European Research Council240672, 306478, 291329
Australian Research CouncilCE110001020
Deutsche Forschungsgemeinschaft
Generalitat de Catalunya
Agencia Nacional de Investigación y Desarrollo
Ministerio de Ciencia, Tecnología e Innovación Productiva
Ministerio de Economía y CompetitividadSEV-2016-0588, SEV-2016-0597, ESP2015-66861, MDM-2015-0509, FPA2015-68048, AYA2015-71825
Conselho Nacional de Desenvolvimento Científico e Tecnológico465376/2014-2
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Financiadora de Estudos e Projetos
Ministry of Education and Science of Ukraine
European Regional Development Fund

    Keywords

    • Supernovae: general

    Fingerprint

    Dive into the research topics of 'Superluminous supernovae from the Dark Energy Survey'. Together they form a unique fingerprint.

    Cite this