Abstract
Site-specific determination of molecular motion and water accessibility by indirect detection of 2H NMR spectra has advantages over dipolar-coupling based techniques due to the large quadrupolar couplings and the ensuing high angular resolution. Recently, a Rotor Echo Short Pulse IRrAdiaTION mediated cross polarization (RESPIRATIONCP) technique was developed, which allowed efficient transfer of 2H magnetization to 13C at moderate 2H radiofrequency field strengths available on most commercial MAS probes. In this work, we investigate the 2H–13C magnetization transfer characteristics of one-bond perdeuterated CDn spin systems and two-bond H/D exchanged C–(O)–D and C–(N)–D spin systems in carbohydrates and proteins. Our results show that multi-bond, broadband 2H–13C polarization transfer can be achieved using 2H radiofrequency fields of ~50 kHz, relatively short contact times of 1.3–1.7 ms, and with sufficiently high sensitivity to enable 2D 2H–13C correlation experiments with undistorted 2H spectra in the indirect dimension. To demonstrate the utility of this 2H–13C technique for studying molecular motion, we show 2H–13C correlation spectra of perdeuterated bacterial cellulose, whose surface glucan chains exhibit a motionally averaged C6 2H quadrupolar coupling that indicates fast trans-gauche isomerization about the C5–C6 bond. In comparison, the interior chains in the microfibril core are fully immobilized. Application of the 2H–13C correlation experiment to H/D exchanged Arabidopsis primary cell walls show that the O–D quadrupolar spectra of the highest polysaccharide peaks can be fit to a two-component model, in which 74% of the spectral intensity, assigned to cellulose, has a near-rigid-limit coupling, while 26% of the intensity, assigned to matrix polysaccharides, has a weakened coupling of 50 kHz. The latter O–D quadrupolar order parameter of 0.22 is significantly smaller than previously reported C–D dipolar order parameters of 0.46–0.55 for pectins, suggesting that additional motions exist at the C–O bonds in the wall polysaccharides. 2H–13C polarization transfer profiles are also compared between statistically deuterated and H/D exchanged GB1.
Original language | English |
---|---|
Pages (from-to) | 257-270 |
Number of pages | 14 |
Journal | Journal of Biomolecular NMR |
Volume | 68 |
Issue number | 4 |
DOIs | |
State | Published - Aug 1 2017 |
Funding
This work is partially supported by NIH grant GM088204 to M. H. The plant cell wall and bacterial cellulose portion of the work was supported by the Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001090. Acknowledgements This work is partially supported by NIH grant GM088204 to M. H. The plant cell wall and bacterial cellulose portion of the work was supported by the Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001090.
Funders | Funder number |
---|---|
Center for Lignocellulose Structure | |
Center for Lignocellulose Structure and Formation | |
Energy Frontier Research Center | |
National Institutes of Health | |
U.S. Department of Energy | |
National Institute of General Medical Sciences | R01GM088204 |
Office of Science | |
Basic Energy Sciences | DE-SC0001090 |
Keywords
- CP
- Cellulose
- Molecular motion
- Plant primary cell walls
- Trans-gauche isomerization