Abstract
We developed a new approach to attach particles onto a conductive layer as a working electrode (WE) in a microfluidic electrochemical cell with three electrodes. Nafion, an efficient proton transfer molecule, is used to form a thin protection layer to secure particle electrodes. Spin coating is used to develop a thin and even layer of Nafion membrane. The effects of Nafion (5 wt% 20 wt%) and spinning rates were evaluated using multiple sets of replicates. The electrochemical performance of various devices was demonstrated. Additionally, the electrochemical performance of the devices is used to select and optimize fabrication conditions. The results show that a higher spinning rate and a lower Nafion concentration (5 wt%) induce a better performance, using cerium oxide (CeO2) particles as a testing model. The WE surfaces were characterized using atomic force microscopy (AFM), scanning electron microscopy-focused ion beam (SEM-FIB), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and X-ray photoelectron spectroscopy (XPS). The comparison between the pristine and corroded WE surfaces shows that Nafion is redistributed after potential is applied. Our results verify that Nafion membrane offers a reliable means to secure particles onto electrodes. Furthermore, the electrochemical performance is reliable and reproducible. Thus, this approach provides a new way to study more complex and challenging particles, such as uranium oxide, in the future.
Original language | English |
---|---|
Article number | 1414 |
Journal | Micromachines |
Volume | 12 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2021 |
Externally published | Yes |
Funding
The programmatic support for this work was from the U.S. Department of Energy Nuclear Energy Spent Fuel Waste Science Technology (SFWST) program (Project# 60410). X.-Y.Y. thanks the Office of Science, Office of Basic Energy Sciences, of the U.S. DOE through the Direct Air Capture Program for partial support for the electrode development and characterization. Part of the work was performed using the Environmental Molecular Sciences Laboratory (grid436923.9), a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research. PNNL is operated by Battelle under the contract DE-AC05-76RL01830. Funding: The programmatic support for this work was from the U.S. Department of Energy Nuclear Energy Spent Fuel Waste Science Technology (SFWST) program (Project# 60410). X.-Y.Y. thanks the Office of Science, Office of Basic Energy Sciences, of the U.S. DOE through the Direct Air Capture Program for partial support for the electrode development and characterization. Part of the work was performed using the Environmental Molecular Sciences Laboratory (grid436923.9), a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research. PNNL is operated by Battelle under the contract DE-AC05-76RL01830.
Keywords
- CeO
- Electrochemical analysis
- Microfluidic electrochemical cell
- Nafion membrane
- Nanoparticle
- Particle attached electrode
- System for Analysis at the Liquid-Vacuum Interface (SALVI)
- Working electrode