Study of pretuning and high power test of DTL iris waveguide couplers using a single cell cavity

Sung Woo Lee, Yoon W. Kang, Mark Champion

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Six drift tube linac (DTL) cavities have been operating successfully at the Spallation Neutron Source (SNS). Each cavity is fed by a tapered ridge waveguide iris input coupler and a waveguide ceramic disk window. The original couplers and cavities have been in service for more than a decade. Design optimization and tuning of the couplers were initially performed prior to installation and commissioning of the cavities. Since each DTL cavity is unique, expensive, and fully utilized for neutron production, none of the cavity structure is available as a test cavity or a spare. Maintaining spares for operations and for future system upgrade, test setup of the iris couplers for precision tuning is needed. Ideally a smaller cavity structure may be used for pretuning and RF conditioning of the iris couplers as a test cavity or a bridge waveguide. In this paper, study of using a single cell cavity for the iris tuning and conditioning is presented along with the 3D simulation results.

Original languageEnglish
Title of host publicationIPAC 2016 - Proceedings of the 7th International Particle Accelerator Conference
PublisherJoint Accelerator Conferences Website (JACoW)
Pages522-524
Number of pages3
ISBN (Electronic)9783954501472
StatePublished - 2016
Event7th International Particle Accelerator Conference, IPAC 2016 - Busan, Korea, Republic of
Duration: May 8 2016May 13 2016

Publication series

NameIPAC 2016 - Proceedings of the 7th International Particle Accelerator Conference

Conference

Conference7th International Particle Accelerator Conference, IPAC 2016
Country/TerritoryKorea, Republic of
CityBusan
Period05/8/1605/13/16

Fingerprint

Dive into the research topics of 'Study of pretuning and high power test of DTL iris waveguide couplers using a single cell cavity'. Together they form a unique fingerprint.

Cite this