Abstract
Neutron and x-ray diffraction experiments of high resolving power with neutrons from a spallation source and high-energy photons from a synchrotron have been performed on compositional series of binary Zn, Nb and on mixed Zn/Nb tellurite glasses. The Te-O, Zn-O and Nb-O coordination numbers are determined by Gaussian fitting of the first-neighbour peaks in the neutron and x-ray data simultaneously. The transition of TeO4 to TeO3 units with increasing fraction of a second component is indicated by decreasing total Te-O coordination numbers. This transition appears different for glasses with ZnO or Nb2O5 additions. Details of the Te-O peaks suggest there are two species of Te-O bonds with lengths of ∼0.19 and ∼0.21 nm. The change of their fractions shows excellent agreement with the existence of TeO4 trigonal bipyramids and TeO3 trigonal pyramids. All oxygen atoms from ZnO and Nb2O5 are used for rupture of Te-O-Te bridges, which is accompanied with a change of nearly all participating TeO4 to TeO3 groups. The tendency for a TeO4 → TeO3 change decreases for glasses of higher second component content which is accompanied by the occurrence of TeO4 groups with non-bridging oxygens. The Nb tellurite glasses show transition to network-forming behaviour with the formation of Nb-O-Nb bridges. The fractions of TeO3 units of ternary Zn/Nb tellurite glasses agree with an additivity behaviour of the modifying effects of ZnO and Nb2O5 additions.
Original language | English |
---|---|
Pages (from-to) | 1645-1663 |
Number of pages | 19 |
Journal | Journal of Physics Condensed Matter |
Volume | 16 |
Issue number | 9 |
DOIs | |
State | Published - Mar 10 2004 |
Externally published | Yes |