TY - JOUR
T1 - Structure of polyol-ligand-containing polymer brush on the porous membrane for antimony(III) binding
AU - Saito, Tomonori
AU - Kawakita, Hidetaka
AU - Uezu, Kazuya
AU - Tsuneda, Satoshi
AU - Hirata, Akira
AU - Saito, Kyoichi
AU - Tamada, Masao
AU - Sugo, Takanobu
PY - 2004/6/15
Y1 - 2004/6/15
N2 - A polyol-ligand-containing porous hollow-fiber membrane for the recovery of antimony(III) was prepared by radiation-induced graft polymerization of an epoxy-group-containing vinyl monomer, glycidyl methacrylate (GMA), and by subsequent functionalization with N-methylglucamine (NMG) and 3-amino-1,2-propanediol (APD), that form a coordination complex with Sb(III). The structure of NMG-Sb(III) and APD-Sb(III) complexes in aqueous solution were determined by electron ionization-time-of-flight mass spectrometer (ESI-TOF-MS), and the binding ratio of NMG or APD to Sb(III) is 2:1. An antimony(III) oxide solution (10 mg Sb/l, pH 11.4) was forced to permeate through the submicron-diameter pores of the polyol-ligand-containing porous hollow-fiber membranes. The equilibrium binding capacity for antimony(III) to the NMG-ligand-containing porous hollow-fiber membrane, 96 g Sb/kg, was 10 times higher than that of the APD membrane. In a further study of the NMG membrane, the equilibrium binding ratios for antimony(III) to NMG groups were all approximately 0.5, illustrating that the NMG-Sb(III) complex on the fibers was in the ratio of 2:1. The results of computational structural analysis of the NMG-Sb(III) complex were in agreement with the experimental results of binding ratio. It was verified that an antimony(III) ion formed a coordination complex with two adjacent hydroxyl groups of two NMG moieties. The length of a functional group and the distance between functional groups on the polymer brush were significant factors to bind antimony(III) through the computational simulation.
AB - A polyol-ligand-containing porous hollow-fiber membrane for the recovery of antimony(III) was prepared by radiation-induced graft polymerization of an epoxy-group-containing vinyl monomer, glycidyl methacrylate (GMA), and by subsequent functionalization with N-methylglucamine (NMG) and 3-amino-1,2-propanediol (APD), that form a coordination complex with Sb(III). The structure of NMG-Sb(III) and APD-Sb(III) complexes in aqueous solution were determined by electron ionization-time-of-flight mass spectrometer (ESI-TOF-MS), and the binding ratio of NMG or APD to Sb(III) is 2:1. An antimony(III) oxide solution (10 mg Sb/l, pH 11.4) was forced to permeate through the submicron-diameter pores of the polyol-ligand-containing porous hollow-fiber membranes. The equilibrium binding capacity for antimony(III) to the NMG-ligand-containing porous hollow-fiber membrane, 96 g Sb/kg, was 10 times higher than that of the APD membrane. In a further study of the NMG membrane, the equilibrium binding ratios for antimony(III) to NMG groups were all approximately 0.5, illustrating that the NMG-Sb(III) complex on the fibers was in the ratio of 2:1. The results of computational structural analysis of the NMG-Sb(III) complex were in agreement with the experimental results of binding ratio. It was verified that an antimony(III) ion formed a coordination complex with two adjacent hydroxyl groups of two NMG moieties. The length of a functional group and the distance between functional groups on the polymer brush were significant factors to bind antimony(III) through the computational simulation.
KW - Antimony(III)
KW - Polymer brush
KW - Porous membrane
UR - http://www.scopus.com/inward/record.url?scp=2342623461&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2004.02.012
DO - 10.1016/j.memsci.2004.02.012
M3 - Article
AN - SCOPUS:2342623461
SN - 0376-7388
VL - 236
SP - 65
EP - 71
JO - Journal of Membrane Science
JF - Journal of Membrane Science
IS - 1-2
ER -