Structural, Spectroscopic, and Kinetic Insight into the Heating Rate Dependence of Studtite and Metastudtite Dehydration

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Uranyl peroxide minerals studtite (UO2O2·4H2O) and metastudtite (UO2O2·2H2O) are important materials in the nuclear fuel cycle. When heated, they dehydrate and transform to amorphous uranium oxides (UOx), yet phase stability and heating rate dependence of these transformations are poorly understood. This information is critical to proper management of fuel cycle materials. In this work, we use in situ powder X-ray diffraction (PXRD), Raman spectroscopy, and thermogravimetric analysis (TGA) to monitor the dehydration of studtite and metastudtite. Strong linear correlation between the heating rate and phase transition temperature is observed. Geometric contraction and diffusion-related kinetic models describe studtite dehydration at slow heating rates, whereas Avrami-Erofeev or reaction order models become more accurate for faster thermal treatments. A second order model describes the transition from metastudtite to UOx regardless of the heating rate. Water retention during studtite dehydration is indicated by PXRD, Raman spectroscopy, and TGA. We observe mixed-phase UOx dehydration products of metastudtite with a likely formation mechanism involving conversion of some uranyl centers from hexagonal to pentagonal bipyramidal coordination units via peroxide liberation. Our observations clarify over 100 years of measurements on these materials and represent an advancement in understanding the chemical behavior of nuclear fuel cycle materials.

Original languageEnglish
Pages (from-to)26699-26713
Number of pages15
JournalJournal of Physical Chemistry C
Volume124
Issue number49
DOIs
StatePublished - Dec 10 2020

Bibliographical note

Publisher Copyright:
© 2020 American Chemical Society. All rights reserved.

Fingerprint

Dive into the research topics of 'Structural, Spectroscopic, and Kinetic Insight into the Heating Rate Dependence of Studtite and Metastudtite Dehydration'. Together they form a unique fingerprint.

Cite this