Abstract
Production of second-generation bioethanol from lignocellulosic biomass requires pretreatment to open the plant cell wall structure and improve enzyme access. Many different thermochemical pretreatments have been extensively developed and employed, but the exact nature of plant cell wall recalcitrance and the most efficient and economical approach to alter plant cell wall structure via pretreatment still remain elusive. In order to understand the role of noncellulosic switchgrass polymers on the overall efficiency of pretreatment, the structural evolution of the noncellulosic polymers of the plant cell wall were investigated during dilute acid pretreatment (DAP) by employing in-situ small-angle neutron scattering (in-situ SANS). In this study, we observed real-time structural changes not possible to observe by any other technique. To deconvolute the structural evolution of lignin and hemicellulose polymers during DAP, native switchgrass (NATV), and isolated holocellulose (HOLO) and cellulose (CELL) fractions from NATV were studied. Our results show that aggregate particles first appear around 80 °C for NATV and HOLO samples. Due to the low temperature and pretreatment severity condition, these particles are likely derived from hemicellulose. The formations of much larger aggregate particles, only observed in the NATV sample, were attributed to lignin. For the HOLO sample, as the temperature and pretreatment severity condition increased, hemicellulose-derived aggregate particle sizes increased, suggesting this process was the nucleation and early stage formation of pseudolignin particles. Consistent with our interpretation of structural evolutions in NATV and HOLO samples, no formation of aggregate particles was observed in CELL samples for the entire duration of the pretreatment. These results suggest that not only lignin but also hemicellulose can form aggregate particles within plant cell walls during pretreatment.
Original language | English |
---|---|
Pages (from-to) | 314-322 |
Number of pages | 9 |
Journal | ACS Sustainable Chemistry and Engineering |
Volume | 10 |
Issue number | 1 |
DOIs | |
State | Published - Jan 10 2022 |
Funding
Switchgrass samples and cell wall compositional data were obtained through a collaborative agreement with the BioEnergy Science Center (BESC) funded by the Office of Science, Office of Biological and Environmental Research, U.S. Department of Energy (DOE) and located at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. This research was funded by the DOE Office of Science, Office of Biological and Environmental Research under the Genomic Sciences Program (FWP ERKP752). Neutron scattering research conducted at the Bio-SANS instrument, a DOE Office of Science, Office of Biological and Environmental Research resource, used resources at the High Flux Isotope Reactor, a DOE Office of Science, Scientific User Facility operated by the Oak Ridge National Laboratory. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ).
Keywords
- Dilute acid pretreatment
- Hemicellulose aggregation
- Lignin aggregation
- Small-angle neutron scattering
- Switchgrass