Structural modulation and spin glassiness upon oxidation in oxygen storage material LnFeMnO4+x for Ln = Y, Lu, and Yb

Tianyu Li, Sz Chian Liou, Stephanie J. Hong, Qiang Zhang, H. Cein Mandujano, Efrain E. Rodriguez

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The mixed valence multiferroic LnFe2+Fe3+O4 (where Ln = Y, Lu, and Yb) can reversibly uptake oxygen into its lattice, which is evidenced by a crystallographic phase transition along with the appearance of structural modulations. In this study, we show that the Mn-substituted version of this multiferroic can also be readily oxidized to LnFe3+Mn3+O4.5 revealing similar oxygen storage behavior. Through neutron, electron, and synchrotron x-ray diffraction studies, we observe a structural modulation that we attribute to a displacement wave in the fully oxidized compound. This wave exhibits commensurability with a wavevector q = (−2/7, 1/7, 0). Bond valence summation analysis of plausible interstitial oxygen positions suggests that oxygen insertion likely occurs at the middle of the Fe/Mn-O bipyramid layers. The structural modulation of LnFeMnO4.5 is two-dimensional, propagates along the ab-plane, and is highly symmetric as 12 identical modulation vectors are observed in the diffraction patterns. The nature of the lanthanide, Ln3+, does not seem to influence such modulations since we observe identical satellite reflections for all three samples of Ln = Y, Lu, and Yb. Both LnFeMnO4 and LnFeMnO4.5 display spin glassy behavior with 2D short-range magnetic ordering being observed in LnFeMnO4. Analysis of the neutron diffraction data reveals a correlation length of ∼10 nm. Upon oxidation to LnFeMnO4.5, the short-range magnetic order is significantly suppressed.

Original languageEnglish
Article number061120
JournalAPL Materials
Volume11
Issue number6
DOIs
StatePublished - Jun 1 2023

Bibliographical note

Publisher Copyright:
© 2023 Author(s).

Fingerprint

Dive into the research topics of 'Structural modulation and spin glassiness upon oxidation in oxygen storage material LnFeMnO4+x for Ln = Y, Lu, and Yb'. Together they form a unique fingerprint.

Cite this