TY - JOUR
T1 - Structural and electrochemical study of Al2O3 and TiO2 Coated Li1.2Ni0.13Mn0.54Co 0.13O2 cathode material using ALD
AU - Zhang, Xiaofeng
AU - Belharouak, Ilias
AU - Li, Li
AU - Lei, Yu
AU - Elam, Jeffrey W.
AU - Nie, Anmin
AU - Chen, Xinqi
AU - Yassar, Reza S.
AU - Axelbaum, Richard L.
PY - 2013/10
Y1 - 2013/10
N2 - Nanolayers of Al2O3 and TiO2 coatings were applied to lithium- and manganese-rich cathode powder Li1.2Ni 0.13Mn0.54Co0.13O2 using an atomic layer deposition (ALD) method. The ALD coatings exhibited different surface morphologies; the Al2O3 surface film appeared to be uniform and conformal, while the TiO2 layers appeared as particulates across the material surface. In a Li-cell, the Al2O3 surface film was stable during repeated charge and discharge, and this improved the cell cycling stability, despite a high surface impedance. The TiO 2 layer was found to be more reactive with Li and formed a Li xTiO2 interface, which led to a slight increase in cell capacity. However, the repetitive insertion/extraction process for the Li + ions caused erosion of the surface protective TiO2 film, which led to degradation in cell performance, particularly at high temperature. For cells comprised of the coated Li1.2Ni0.13Mn 0.54Co0.13O2 and an anode of meso-carbon-micro-beads (MCMB), the cycling stability introduced by ALD was not enough to overcome the electrochemical instability of MCMB graphite. Therefore, protection of the cathode materials by ALD Al2O3 or TiO2 can address some of the capacity fading issues related to the Li-rich cathode at room temperature.
AB - Nanolayers of Al2O3 and TiO2 coatings were applied to lithium- and manganese-rich cathode powder Li1.2Ni 0.13Mn0.54Co0.13O2 using an atomic layer deposition (ALD) method. The ALD coatings exhibited different surface morphologies; the Al2O3 surface film appeared to be uniform and conformal, while the TiO2 layers appeared as particulates across the material surface. In a Li-cell, the Al2O3 surface film was stable during repeated charge and discharge, and this improved the cell cycling stability, despite a high surface impedance. The TiO 2 layer was found to be more reactive with Li and formed a Li xTiO2 interface, which led to a slight increase in cell capacity. However, the repetitive insertion/extraction process for the Li + ions caused erosion of the surface protective TiO2 film, which led to degradation in cell performance, particularly at high temperature. For cells comprised of the coated Li1.2Ni0.13Mn 0.54Co0.13O2 and an anode of meso-carbon-micro-beads (MCMB), the cycling stability introduced by ALD was not enough to overcome the electrochemical instability of MCMB graphite. Therefore, protection of the cathode materials by ALD Al2O3 or TiO2 can address some of the capacity fading issues related to the Li-rich cathode at room temperature.
KW - atomic layer deposition
KW - cathode materials
KW - lithium-ion batteries
KW - surface modification
UR - http://www.scopus.com/inward/record.url?scp=84886086293&partnerID=8YFLogxK
U2 - 10.1002/aenm.201300269
DO - 10.1002/aenm.201300269
M3 - Article
AN - SCOPUS:84886086293
SN - 1614-6832
VL - 3
SP - 1299
EP - 1307
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 10
ER -