Strongly Anharmonic Phonons and Their Role in Superionic Diffusion and Ultralow Thermal Conductivity of Cu7PSe6

Mayanak K. Gupta, Jingxuan Ding, Dipanshu Bansal, Douglas L. Abernathy, Georg Ehlers, Naresh C. Osti, Wolfgang G. Zeier, Olivier Delaire

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

The quest for advanced superionic materials requires understanding their complex atomic dynamics, but detailed studies of the interplay between lattice vibrations and ionic diffusion remain scarce. Here inelastic and quasielastic neutron scattering measurements in the superionic argyrodite Cu7PSe6 are reported, combined with molecular dynamics (MD) based on ab initio and machine-learned potentials, providing critical insights into the atomistic mechanisms underlying fast ion conduction. The results reveal how long-range Cu diffusion is limited by intercluster hopping, controlled by selective anharmonic phonons of the crystalline framework. Further, the Green–Kubo simulations reproduce the ultralow lattice thermal conductivity and identify contributions from mobile ions, phonons, and their cross-correlations. The mode resolved analysis shows that the thermal conductivity is dominated by low-energy acoustic phonon modes of the overall crystal framework. The analysis of mode-resolved spectral functions further show that vibrational modes with significant Cu contributions are strongly damped, corresponding to the breakdown of associated phonon quasiparticles. These results highlight the importance of strongly anharmonic effects in superionic systems, in which the traditional quasiharmonic phonon picture is insufficient, and pave the way toward combining machine-learning accelerated simulations with neutron scattering experiments to rationalize the complex atomic dynamics underlying ionic and thermal transport.

Original languageEnglish
Article number2200596
JournalAdvanced Energy Materials
Volume12
Issue number23
DOIs
StatePublished - Jun 16 2022

Funding

M.G. and O.D. were supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences, and Engineering Division, under Award No. DE‐SC0019978. J.D. was supported by US DOE, Office of Science, Basic Energy Sciences, Materials Sciences, and Engineering Division, under Award No. DE‐SC0019299. The use of Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE. Theoretical calculations were performed using resources of the National Energy Research Scientific Computing Center, a US DOE Office of Science User Facility supported by the Office of Science of the US DOE under Contract No. DE‐AC02‐05CH11231.

Keywords

  • first-principles simulations
  • lattice dynamics
  • machine learning
  • molecular dynamics
  • neutron scattering
  • superionic diffusion
  • ultralow thermal conductivity

Fingerprint

Dive into the research topics of 'Strongly Anharmonic Phonons and Their Role in Superionic Diffusion and Ultralow Thermal Conductivity of Cu7PSe6'. Together they form a unique fingerprint.

Cite this