Abstract
The interaction of a moving [image omitted] twin boundary with clusters of self-interstitial atoms and vacancies, containing up to 35 point defects, has been studied by atomic computer simulation in a model crystal of -zirconium. Conservative movement of the boundary has been achieved by glide of twinning dislocations of edge character under applied shear stress. Several reactions were observed, the result depending on cluster orientation and location relative to the glide plane of the twinning dislocation. They include: (i) restriction of twin boundary mobility; (ii) change of cluster orientation and shape; (iii) glissile cluster drag by the boundary without contact; and (iv) total or partial absorption of a cluster by the twin boundary and cluster drag, together with simultaneous glide along the interface. It is concluded that the applied shear stress for motion of twin boundaries is raised by interaction with point defect clusters. Furthermore, moving twin boundaries act as defect sinks or recombination centres and provide a means for removing defects from regions of radiation damage.
Original language | English |
---|---|
Pages (from-to) | 451-459 |
Number of pages | 9 |
Journal | Philosophical Magazine Letters |
Volume | 87 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2007 |
Funding
Discussions with Prof. N. de Diego are acknowledged. AS was supported by the Spanish MCYT (BFM2003-08211-C03-03), YNO was partly supported by the Division of Materials Sciences and Engineering, U.S. DOE, under contract DE-AC05-00OR22725 with UT-Battelle, LLC; the computing was carried out in CESCA (www.CESCA.es).
Funders | Funder number |
---|---|
MCYT | BFM2003-08211-C03-03 |
U.S. Department of Energy | DE-AC05-00OR22725 |
Division of Materials Sciences and Engineering |