Strategies for Integrating Deep Learning Surrogate Models with HPC Simulation Applications

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The emerging trend of the convergence of high performance computing (HPC), machine learning/deep learning (ML/DL), and big data analytics presents a host of challenges for large-scale computing campaigns that seek best practices to interleave traditional scientific simulation-based workloads with ML/DL models. A portfolio of systematic approaches to incorporate deep learning into modeling and simulation serves a vital need when we support AI for science at a computing facility. In this paper, we evaluate several strategies for deploying deep learning surrogate models in a representative physics application on supercomputers at the Oak Ridge Leadership Computing Facility (OLCF). We discuss a set of recommended deployment architectures and implementation approaches. We analyze and evaluate these alternatives and show their performance and scalability up to 1000 GPUs on two mainstream platforms equipped with different deep learning hardware and software stacks.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE 36th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1256-1265
Number of pages10
ISBN (Electronic)9781665497473
DOIs
StatePublished - 2022
Event36th IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2022 - Virtual, Online, France
Duration: May 30 2022Jun 3 2022

Publication series

NameProceedings - 2022 IEEE 36th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2022

Conference

Conference36th IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2022
Country/TerritoryFrance
CityVirtual, Online
Period05/30/2206/3/22

Funding

This research was sponsored by and used resources of the Oak Ridge Leadership Computing Facility (OLCF), which is a DOE Office of Science User Facility at the Oak Ridge National Laboratory supported by the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This manuscript has been co-authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
U.S. Department of EnergyDE-AC05-00OR22725
Office of Science

    Keywords

    • AI surrogate model
    • HPC Simulation
    • SmartRe-dis

    Fingerprint

    Dive into the research topics of 'Strategies for Integrating Deep Learning Surrogate Models with HPC Simulation Applications'. Together they form a unique fingerprint.

    Cite this