Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La1.85Sr0.15CuO4

Tricia L. Meyer, Ryan Jacobs, Dongkyu Lee, Lu Jiang, John W. Freeland, Changhee Sohn, Takeshi Egami, Dane Morgan, Ho Nyung Lee

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

Oxygen defect control has long been considered an important route to functionalizing complex oxide films. However, the nature of oxygen defects in thin films is often not investigated beyond basic redox chemistry. One of the model examples for oxygen-defect studies is the layered Ruddlesden-Popper phase La2-x Sr x CuO4-δ (LSCO), in which the superconducting transition temperature is highly sensitive to epitaxial strain. However, previous observations of strain-superconductivity coupling in LSCO thin films were mainly understood in terms of elastic contributions to mechanical buckling, with minimal consideration of kinetic or thermodynamic factors. Here, we report that the oxygen nonstoichiometry commonly reported for strained cuprates is mediated by the strain-modified surface exchange kinetics, rather than reduced thermodynamic oxygen formation energies. Remarkably, tensile-strained LSCO shows nearly an order of magnitude faster oxygen exchange rate than a compressively strained film, providing a strategy for developing high-performance energy materials.

Original languageEnglish
Article number92
JournalNature Communications
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2018

Funding

National Science Foundation grant number OCI-1053575.

Fingerprint

Dive into the research topics of 'Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La1.85Sr0.15CuO4'. Together they form a unique fingerprint.

Cite this