Abstract
Using a series of polycations synthesized by atom transfer radical polymerization (ATRP), we investigate the effects of the polymer charge density and hydrophobicity on salt-induced interdiffusion of polymer layers within polyelectrolyte multilayer (PEM) films. Polycations with two distinct hydrophobicities and various quaternization degrees (QPDMA and QPDEA) were derived from parent polymers of matched molecular weights-poly(2-(dimethylamino) ethyl methacrylate) (PDMA) and poly(2-(diethylamino)ethyl methacrylate) (PDEA)-by quaternization with either methyl or ethyl sulfate. Multilayers of these polycations with polystyrenesulfonate (PSS) were assembled in low-salt conditions and annealed in NaCl solutions to induce layer intermixing. As revealed by neutron reflectometry (NR), polycations with lower charge density resulted in a faster decay of film structure with distance from the substrate. Interestingly, when comparing polymer mobility in QPDEA/PSS and QPDMA/PSS films, layer intermixing was faster in the case of more hydrophobic QPDEA as compared to QPDMA because of the weaker ionic pairing (due to the presence of a bulky ethyl spacer) between QPDEA and PSS.
Original language | English |
---|---|
Pages (from-to) | 6518-6524 |
Number of pages | 7 |
Journal | Macromolecules |
Volume | 44 |
Issue number | 16 |
DOIs | |
State | Published - Aug 23 2011 |
Externally published | Yes |