Abstract
A Streamlined Upwind Petrov-Galerkin (SUPG) stabilized finite-element discretization has been implemented as a library into the FUN3D unstructured-grid flow solver. Motivation for the selection of this methodology is given, details of the implementation are provided, and the discretization for the interior scheme is verified for linear and quadratic elements by using the method of manufactured solutions. A methodology is also described for capturing shocks, and simulation results are compared to the finite-volume formulation that is currently the primary method employed for routine engineering applications. The finite-element methodology is demonstrated to be more accurate than the finite-volume technology, particularly on tetrahedral meshes where the solutions obtained using the finite-volume scheme can suffer from adverse effects caused by bias in the grid. Although no effort has been made to date to optimize computational efficiency, the finite-element scheme is competitive with the finite-volume scheme in terms of computer time to reach convergence.
Original language | English |
---|---|
Title of host publication | AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting |
Publisher | American Institute of Aeronautics and Astronautics Inc. |
ISBN (Electronic) | 9781624104473 |
DOIs | |
State | Published - 2017 |
Externally published | Yes |
Event | 55th AIAA Aerospace Sciences Meeting - Grapevine, United States Duration: Jan 9 2017 → Jan 13 2017 |
Publication series
Name | AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting |
---|
Conference
Conference | 55th AIAA Aerospace Sciences Meeting |
---|---|
Country/Territory | United States |
City | Grapevine |
Period | 01/9/17 → 01/13/17 |
Funding
This research was sponsored by NASA’s Transformational Tools and Technologies (TTT) Project of the Transformative Aeronautics Concepts Program under the Aeronautics Research Mission Directorate.