Abstract
High purity chemically vapor-deposited (CVD) silicon carbide (SiC) and near-stoichiometric SiC fiber, chemically vapor-infiltrated (CVI) SiC matrix composite were evaluated following neutron irradiation to ∼28 dpa at 300 and 650 °C and to ∼41 dpa at 800 °C, respectively. The irradiated swelling, thermal conductivity, and elastic modulus indicated no additional changes in these properties at high fluences after saturation at low fluences. With a statistically meaningful sample population, no change in flexural strength of CVD SiC was observed after 300 °C irradiation. A slight decrease in strength was observed after 650 °C irradiation but was attributed to an experimental artifact; specifically, a reaction between samples and the capsule components. The Hi-Nicalon™ Type-S, CVI SiC composite retained the pre-irradiation strength and the non-linear fracture mode. The electrical resistivity measurement revealed a relatively minor effect of irradiation. Overall, irradiation-insensitivity of the high purity SiC ceramics and composite to neutron irradiation to doses 30-40 dpa at temperatures 300-800 °C was demonstrated.
Original language | English |
---|---|
Pages (from-to) | 400-405 |
Number of pages | 6 |
Journal | Journal of Nuclear Materials |
Volume | 417 |
Issue number | 1-3 |
DOIs | |
State | Published - Oct 1 2011 |
Funding
This work was performed as a part of JAEA-DOE collaboration on fusion materials research. The US activity was supported by the Office of Fusion Energy Sciences and the Office of Nuclear Energy, US Department of Energy under contract DE-AC05-00OR22725 with UT-Battelle, LLC.
Funders | Funder number |
---|---|
US Department of Energy | DE-AC05-00OR22725 |
Office of Nuclear Energy | |
Fusion Energy Sciences |