TY - GEN
T1 - Spreading Factor Allocation Strategy for LoRa Networks under Imperfect Orthogonality
AU - Amichi, Licia
AU - Kaneko, Megumi
AU - Rachkidy, Nancy El
AU - Guitton, Alexandre
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/5
Y1 - 2019/5
N2 - Low-Power Wide-Area Network (LPWAN) based on LoRa physical layer is envisioned as one of the most promising technologies to support future Internet of Things (IoT) systems. LoRa provides flexible adaptations of coverage and data rates by allocating different Spreading Factors (SFs) to end-devices. Although most works so far had considered perfect orthogonality among SFs, the harmful effects of inter-SF interferences have been demonstrated recently. Therefore in this work, we consider the problem of SF allocation optimization under co-SF and inter-SF interferences, for uplink transmissions from end-devices to the gateway. To provide fairness, we formulate the problem as maximizing the minimum achievable average rate in LoRa, and propose a SF allocation algorithm based on matching theory. Numerical results show that our proposed algorithm enables to jointly enhance the minimal user rates, network throughput and fairness, compared to baseline SF allocation methods.
AB - Low-Power Wide-Area Network (LPWAN) based on LoRa physical layer is envisioned as one of the most promising technologies to support future Internet of Things (IoT) systems. LoRa provides flexible adaptations of coverage and data rates by allocating different Spreading Factors (SFs) to end-devices. Although most works so far had considered perfect orthogonality among SFs, the harmful effects of inter-SF interferences have been demonstrated recently. Therefore in this work, we consider the problem of SF allocation optimization under co-SF and inter-SF interferences, for uplink transmissions from end-devices to the gateway. To provide fairness, we formulate the problem as maximizing the minimum achievable average rate in LoRa, and propose a SF allocation algorithm based on matching theory. Numerical results show that our proposed algorithm enables to jointly enhance the minimal user rates, network throughput and fairness, compared to baseline SF allocation methods.
UR - http://www.scopus.com/inward/record.url?scp=85070236171&partnerID=8YFLogxK
U2 - 10.1109/ICC.2019.8761235
DO - 10.1109/ICC.2019.8761235
M3 - Conference contribution
AN - SCOPUS:85070236171
T3 - IEEE International Conference on Communications
BT - 2019 IEEE International Conference on Communications, ICC 2019 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 IEEE International Conference on Communications, ICC 2019
Y2 - 20 May 2019 through 24 May 2019
ER -